【題目】某校的甲、乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距2400米. 甲從小區(qū)步行去學(xué)校,出發(fā)10分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車,途經(jīng)學(xué)校義騎行若干米到達(dá)還車點(diǎn)后,立即步行走回學(xué)校. 已知甲步行的速度比乙步行的速度每分鐘快5米. 設(shè)甲步行的時(shí)間為(分),圖1中線段和折線分別表示甲、乙離開(kāi)小區(qū)的路程(米)與甲步行時(shí)間(分)的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離(米)與甲步行時(shí)間(分)的函數(shù)關(guān)系的圖象(不完整).根據(jù)圖1和圖2中所給信息,解答下列問(wèn)題:
(1)求甲步行的速度和乙出發(fā)時(shí)甲離開(kāi)小區(qū)的路程;
(2)求乙騎自行車的速度和乙到達(dá)還車點(diǎn)時(shí)甲、乙兩人之間的距離;
(3)在圖2中,畫出當(dāng)時(shí)關(guān)于的函數(shù)的大致圖象. (溫馨提示:請(qǐng)畫在答題卷相對(duì)應(yīng)的圖上)
【答案】(1)甲步行的速度是80 米/分,乙出發(fā)時(shí)甲離開(kāi)小區(qū)的路程是800 米;(2)乙到達(dá)還車點(diǎn)時(shí),甲、乙兩人之間的距離是700 米;(3)圖象如圖所示見(jiàn)解析.
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得甲步行的速度和乙出發(fā)時(shí)甲離開(kāi)小區(qū)的路程;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得OA的函數(shù)解析式,然后將x=18代入OA的函數(shù)解析式,即可求得點(diǎn)E的縱坐標(biāo),進(jìn)而可以求得乙騎自行車的速度和乙到達(dá)還車點(diǎn)時(shí)甲、乙兩人之間的距離;
(3)根據(jù)題意可以求得乙到達(dá)學(xué)校的時(shí)間,從而可以函數(shù)圖象補(bǔ)充完整.
(1)由題意,得:甲步行的速度是 (米/分),
∴乙出發(fā)時(shí)甲離開(kāi)小區(qū)的路程是 (米).
(2)設(shè)直線的解析式為:,
∵直線過(guò)點(diǎn),
∴,
解得,
∴直線的解析式為:.
∴當(dāng)時(shí),,
∴乙騎自行車的速度是 (米/分).
∵乙騎自行車的時(shí)間為 (分),
∴乙騎自行車的路程為 (米).
當(dāng)時(shí),甲走過(guò)的路程是 (米),
∴乙到達(dá)還車點(diǎn)時(shí),甲、乙兩人之間的距離是 (米).
(3)乙步行的速度為:80-5=75(米/分),
乙到達(dá)學(xué)校用的時(shí)間為:25+(2700-2400)÷75=29(分),
當(dāng)25≤x≤30時(shí)s關(guān)于x的函數(shù)的大致圖象如圖所示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的中線, 是射線上一動(dòng)點(diǎn)(不與點(diǎn)重合).交射線于點(diǎn),,連結(jié).
(1)如圖1,當(dāng)點(diǎn)在上時(shí),求證:四邊形是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)直按寫出你的結(jié)論;
(3)如圖3,延長(zhǎng)交于點(diǎn),若,且,請(qǐng)求出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:若⊙C上存在一個(gè)點(diǎn)M,使得MP=MC,則稱點(diǎn)P為⊙C的“等徑點(diǎn)”,已知點(diǎn)D(,),E(0,2),F(xiàn)(﹣2,0).
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)D,E,F(xiàn)中,⊙O的“等徑點(diǎn)”是哪幾個(gè)點(diǎn);
②作直線EF,若直線EF上的點(diǎn)T(m,n)是⊙O的“等徑點(diǎn)”,求m的取值范圍.
(2)過(guò)點(diǎn)E作EG⊥EF交x軸于點(diǎn)G,若△EFG各邊上所有的點(diǎn)都是某個(gè)圓的“等徑點(diǎn)”,求這個(gè)圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(Ⅰ)當(dāng)拋物線經(jīng)過(guò)點(diǎn)時(shí),求拋物線的頂點(diǎn)坐標(biāo);
(Ⅱ)若該拋物線開(kāi)口向上,當(dāng)時(shí),拋物線的最高點(diǎn)為,最低點(diǎn)為,點(diǎn)的縱坐標(biāo)為,求點(diǎn)和點(diǎn)的坐標(biāo)。
(Ⅲ)點(diǎn),為拋物線上的兩點(diǎn),設(shè),當(dāng)時(shí),均有,求的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有兩個(gè)相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個(gè)角的夾邊稱為鄰余線.
(1)如圖1,在中,,是的角平分線,,分別是,上的點(diǎn).求證:四邊形是鄰余四邊形.
(2)如圖2,在的方格紙中,,在格點(diǎn)上,請(qǐng)畫出一個(gè)符合條件的鄰余四邊形,使是鄰余線,,在格點(diǎn)上.
(3)如圖3,在(1)的條件下,取中點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),延長(zhǎng)交于點(diǎn).若為的中點(diǎn),,,求鄰余線的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某小吃店一周的營(yíng)業(yè)額(單位:元)如下表:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | 合計(jì) |
540 | 680 | 640 | 640 | 780 | 1110 | 1070 | 5460 |
(1)分析數(shù)據(jù),填空:這組數(shù)據(jù)的平均數(shù)是 元,中位數(shù)是 元,眾數(shù)是 元.
(2)估計(jì)一個(gè)月的營(yíng)業(yè)額(按30天計(jì)算):
①星期一到星期五營(yíng)業(yè)額相差不大,用這5天的平均數(shù)估算合適么: .(填“合適”或“不合適”)
②選擇一個(gè)你認(rèn)為最合適的數(shù)據(jù)估算這個(gè)小吃店一個(gè)月的營(yíng)業(yè)額.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛超市購(gòu)物車放置在水平地面上,其側(cè)面四邊形ABCD與地面某條水平線l在同一平面內(nèi),且AB∥l,若∠A=93°,∠D=111°,則直線CD與l所夾銳角的度數(shù)為( )
A. 15°B. 18°C. 21°D. 24°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),是以點(diǎn)(0,3)為圓心,2為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,工人師傅用一塊長(zhǎng)為10分米,寬為6分米的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形;(厚度不計(jì))
(1)當(dāng)長(zhǎng)方體底面面積為12平方分米時(shí),裁掉的正方形邊長(zhǎng)為______分米;
(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的5倍,且將容器的外表面進(jìn)行防銹處理,其側(cè)面處理費(fèi)用為0.5元/平方分米,底面處理費(fèi)用為2元/平方分米;求:裁掉的正方形邊長(zhǎng)為多大時(shí),防銹處理總費(fèi)用最低,最低為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com