【題目】如圖.在平面直角坐標系中,ABC的三個頂點坐標分別為A-2,1),B-1,4),C-3,2),

1)畫ABC關于y軸對稱的圖形A1B1C1;

2)以O為位似中心,在第二象限內(nèi)把ABC擴大到原來的兩倍,得則A2B2C2,畫出A2B2C2;

3ABC的面積為______

【答案】(1)圖形見解析;(2)圖形見解析;(32

【解析】

1)直接利用軸對稱圖形的性質(zhì)得出對應點位置進而得出答案;

2)直接利用位似圖形的性質(zhì)得出對應點位置進而得出答案;

3)直接利用三角形所在矩形面積減去周圍三角形面積進而得出答案.

1)如圖所示:△A1B1C1頂點坐標為:A12,1),B114),C132);

2)如圖所示:△A2B2C2頂點坐標為:A2-4,2),B2-2,8),C2-6,4);

3)△ABC的面積為:2×3-×2×2-×1×1-×1×3=2

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于O.M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BDE,F兩點,且∠MAN=45°,則下列結論:MN=BM+DN;②△AEF∽△BEM;;④△FMC是等腰三角形.其中正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當在什么范圍時,滿足?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,上一點,和過點的切線互相垂直,垂足為,于點

1)求證:平分

2)連接,若,,求出的直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,分別以ABAC、CB為底作頂角為120°的等腰三角形,頂角頂點分別為DE、F(點E、FAB的同側,點D在另一側)

1)如圖1,若點CAB的中點,則∠CED=______°;

2)如圖2.若點C不是AB的中點

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AD=,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20179月,我國中小學生迎來了新版教育部統(tǒng)編義務教育語文教科書,本次統(tǒng)編本教材最引人關注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展最受歡迎的傳統(tǒng)文化經(jīng)典著作調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:

(1)本次一共調(diào)查了   名學生;

(2)請將條形統(tǒng)計圖補充完整;

(3)某班語文老師想從這四大名著中隨機選取兩部作為學生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中的兩個圖形MN,給出如下定義:P為圖形M上任意一點,Q為圖形N上任意一點,如果P,Q兩點間的距離有最小值,那么稱這個最小值為圖形MN間的和睦距離,記作dMN).若圖形M,N有公共點,則dMN)=0

1)如圖,A0,1),C3,4),⊙C的半徑為2,則dC,⊙C)=   ,dO,⊙C)=   ;

2)已知,如圖,△ABC的一邊ACx軸上,By軸上,且AC8,AB7,BC5

D是△ABC內(nèi)一點,若ACBC分別切⊙DE、F,且dC,D)=2dD,AB),判斷AB與⊙D的位置關系,并求出D點的坐標;

②若以r為半徑,①中的D為圓心的⊙D,有dB,⊙D)>1,dC,⊙D)<2,直接寫出r的取值范圍   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段 AC=4,線段BC繞點C旋轉(zhuǎn),且BC=6,連結AB,以AB為邊作正方形ADEB,連結CD.

(1)若∠ACB=90°,則AB的值是____;

(2)線段CD長的最大值是____

查看答案和解析>>

同步練習冊答案