【題目】已知中,,,點(diǎn),分別在邊上(不與端點(diǎn)重合),,射線延長(zhǎng)線于點(diǎn),點(diǎn)在直線上,.

1)(觀察猜想)如圖1,點(diǎn)在射線上,當(dāng)時(shí),

①線段的數(shù)量關(guān)系是______

的度數(shù)是______;

2)(探究證明)如圖2點(diǎn)在射線上,當(dāng)時(shí),判斷并證明線段的數(shù)量關(guān)系,求的度數(shù);

3)(拓展延伸)如圖3,點(diǎn)在直線上,當(dāng)時(shí),,點(diǎn)邊上的三等分點(diǎn),直線與直線交于點(diǎn),請(qǐng)直接寫(xiě)出線段的長(zhǎng).

【答案】1)①,②;(2;(3)滿足條件的的長(zhǎng)為4.

【解析】

1)①延長(zhǎng)于點(diǎn),交于點(diǎn)O,先由等邊對(duì)等角得到,然后證明,即可得到BM=AN;②再由等邊對(duì)等角和平行線推出,由三角形外角性質(zhì)得到,可推出,即可得.

2)同理可證,同(1)可推出 ,最后得到.

3)當(dāng)時(shí),作,在中,利用60°可求出邊長(zhǎng),然后在在中求出BM,再由,利用相似比求出CF,當(dāng)時(shí),同法可求.

1)①如圖1中,延長(zhǎng)于點(diǎn),交于點(diǎn)O.

,

,

,,

;

②∵,

,

,

,

,

,

∵∠ANB+ENF=180°,∠BMA+BMC=180°,

,

,

,,

,

,

故答案為①,②.

2)如圖2中,設(shè)于點(diǎn).

,

,

,

,

,,

,

,

,,

,

,

,

.

3如圖3-1中,當(dāng)時(shí),作.

由題意,在中,

,

,

中,,

由(2)可知:,,

,

,

.

如圖3-2中,當(dāng)時(shí),同法可得.

綜上所述,滿足條件的的長(zhǎng)為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A1,1),B4,2),C34

1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;

2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;

3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)軸交于、兩點(diǎn)

(點(diǎn)在點(diǎn)的左側(cè)),拋物線的頂點(diǎn)為

1)求拋物線的表達(dá)式;

2)用配方法求點(diǎn)的坐標(biāo);

3)點(diǎn)是線段上的動(dòng)點(diǎn).

①過(guò)點(diǎn)軸的垂線交拋物線于點(diǎn),若,求點(diǎn)的坐標(biāo);

②在①的條件下,點(diǎn)是坐標(biāo)軸上的點(diǎn),且點(diǎn)的距離相等,請(qǐng)直接寫(xiě)出線段的長(zhǎng);

③若點(diǎn)是射線上的動(dòng)點(diǎn),且始終滿足,連接,,請(qǐng)直接寫(xiě)出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】□ABCD中,EBC的中點(diǎn),過(guò)點(diǎn)EEFAB于點(diǎn)F,延長(zhǎng)DC,交FE的延長(zhǎng)線于點(diǎn)G,連結(jié)DF,已知∠FDG=45°

(1)求證:GD=GF.

(2)已知BC=10, .求 CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019319日,河南省教育廳發(fā)布《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的實(shí)施方案》,某中學(xué)為落實(shí)方案,給學(xué)生提供了以下五種主題式研學(xué)線路:A紅色河南,B厚重河南C出彩河南D生態(tài)河南E老家河南為了解學(xué)生最喜歡哪一種研學(xué)線路(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.根據(jù)以上信息解答下列問(wèn)題:

調(diào)查結(jié)果統(tǒng)計(jì)表

主題

人數(shù)/

百分比

A

75

n%

B

m

30%

C

45

15%

D

60

E

30

1)本次接受調(diào)查的總?cè)藬?shù)為   人,統(tǒng)計(jì)表中m   ,n   

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)若把條形統(tǒng)計(jì)圖改為扇形統(tǒng)計(jì)圖,則生態(tài)河南主題線路所在扇形的圓心角度是   

4)若該實(shí)驗(yàn)中學(xué)共有學(xué)生3000人,請(qǐng)據(jù)此估計(jì)該校最喜歡老家河南主題線路的學(xué)生有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過(guò)兩點(diǎn),且與軸交于,直線是拋物線的對(duì)稱軸,過(guò)點(diǎn)的直線與直線相交于點(diǎn),且點(diǎn)在第一象限.

1)求該拋物線的解析式;

2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;

3)點(diǎn)在拋物線的對(duì)稱軸上,與直線軸都相切,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,依次連接第一個(gè)矩形各邊的中點(diǎn)得到一個(gè)菱形,再依次連接菱形各邊的中點(diǎn)得到第二個(gè)矩形,按照此方法繼續(xù)下去.已知第一個(gè)矩形的兩條鄰邊長(zhǎng)分別為68,則第n個(gè)菱形的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某無(wú)人機(jī)興趣小組在操場(chǎng)上開(kāi)展活動(dòng)(如圖),此時(shí)無(wú)人機(jī)在離地面30米的D處,無(wú)人機(jī)測(cè)得操控者A的俯角為37°,測(cè)得點(diǎn)C處的俯角為45°.又經(jīng)過(guò)人工測(cè)量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點(diǎn)A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線軸交于兩點(diǎn),,與軸交于,并且對(duì)稱軸

1)求拋物線的解析式;

2軸上方的拋物線上,過(guò)的直線與直線交于點(diǎn),與軸交于點(diǎn),求的最大值;

3)點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),當(dāng)是以為直角邊的直角三角形時(shí),求點(diǎn)坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案