【題目】如圖1,兩半徑為r的等圓⊙O1和⊙O2相交于M,N兩點,且⊙O2過點O1.過M點作直線AB垂直于MN,分別交⊙O1和⊙O2于A,B兩點,連接NA,NB.
(1)猜想點O2與⊙O1有什么位置關(guān)系,并給出證明;
(2)猜想△NAB的形狀,并給出證明;
(3)如圖2,若過M的點所在的直線AB不垂直于MN,且點A,B在點M的兩側(cè),那么(2)中的結(jié)論是否成立,若成立請給出證明.
【答案】(1)O2在⊙O1上(2)△NAB是等邊三角形(3)仍然成立
【解析】試題分析:(1)通過證明圓心距等于半徑得出點在上;
(2)通過證明 從而得到是等邊三角形;
(3)根據(jù)在同圓中等弧所對的圓周角相等,可求出從求證得是等邊三角形.
試題解析:(1) 在上,
證明:∵過點,
又∵的半徑也是r,
∴點在上;
(2)△NAB是等邊三角形,
證明:∵MN⊥AB,
∴BN是的直徑,AN是的直徑,
即BN=AN=2r, 在BN上, 在AN上.
連接,則是△ABN的中位線。
∴AB=BN=AN,則△NAB是等邊三角形.
(3)仍然成立.
證明:由(2)得,△NAB是等邊三角形,
∴在中, 所對的圓周角為,在中所對的圓周角為,
∴當(dāng)點A,B在點M的兩側(cè)時,
在中所對的圓周角
在中所對的圓周角
∴△NAB是等邊三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AD∥BC,AD=24cm,BC=30cm,點P從A向點D以1cm/s的速度運動,到點D即停止.點Q從點C向點B以2cm/s的速度運動,到點B即停止.直線PQ將四邊形ABCD截得兩個四邊形,分別為四邊形ABQP和四邊形PQCD,則當(dāng)P,Q兩點同時出發(fā),幾秒后所截得兩個四邊形中,其中一個四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-∠2的度數(shù)是( )
A. 32° B. 64° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線 AB 分別交 x 軸、y 軸于點A(–a,0)、點 B(0, b),且 a、b 滿足a2+b2–4a–8b+20=0,點 P 在直線 AB 的右側(cè),且∠APB=45°.
(1)a= ;b= .
(2)若點 P 在 x 軸上,請在圖中畫出圖形(BP 為虛線),并寫出點 P 的坐標(biāo);
(3)若點 P 不在 x 軸上,是否存在點P,使△ABP 為直角三角形?若存在,請求出此時P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次環(huán)保知識測試中,三年一班的兩名同學(xué)根據(jù)班級成績(分?jǐn)?shù)為整數(shù))分別繪制了不同的頻率分布直方圖,如圖1、2,已知圖1從左到右每個小組的頻率分別為0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小組的頻數(shù)為12;圖2從左到右每個小組的頻數(shù)之比為1:2:4:7:6:3:2,請結(jié)合條件和頻率分布直方圖回答下列問題:
(1)三年一班參加測試的人數(shù)是多少?
(2)若這次測試的成績80分以上(含80分)為優(yōu)秀,則優(yōu)秀率是多少?
(3)若這次測試的成績60分以上(含60分)為及格,則及格率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=5,BC=6,點D為BC邊上一動點(不與點B重合),過D作射線DE交AB邊于E,使∠BDE=∠A,以D為圓心、DC的長為半徑作⊙D.
(1)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
(2)當(dāng)⊙D與AB邊相切時,求BD的長.
(3)如果⊙E是以E為圓心,AE的長為半徑的圓,那么當(dāng)BD的長為多少時,⊙D與⊙E相切?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形CEFG繞正方形ABCD的頂點C旋轉(zhuǎn),連接AF,點M是AF中點.
(1)當(dāng)點G在BC上時,如圖2,連接BM、MG,求證:BM=MG;
(2)在旋轉(zhuǎn)過程中,當(dāng)點B、G、F三點在同一直線上,若AB=5,CE=3,則MF= ;
(3)在旋轉(zhuǎn)過程中,當(dāng)點G在對角線AC上時,連接DG、MG,請你畫出圖形,探究DG、MG的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A和動點P在直線l上,點P關(guān)于點A的對稱點為Q,以AQ為邊作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圓O.點C在點P右側(cè),PC=4,過點C作直線m⊥l,過點O作OD⊥m于點D,交AB右側(cè)的圓弧于點E.在射線CD上取點F,使DF=CD,以DE,DF為鄰邊作矩形DEGF.設(shè)AQ=3x.
(1)用關(guān)于x的代數(shù)式表示BQ,DF.
(2)當(dāng)點P在點A右側(cè)時,若矩形DEGF的面積等于90,求AP的長.
(3)在點P的整個運動過程中,
①當(dāng)AP為何值時,矩形DEGF是正方形?
②作直線BG交⊙O于點N,若BN的弦心距為1,求AP的長(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某種新能源汽車的性能,對這種汽車進行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個等級,其中相應(yīng)等級的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)這次被抽檢的新能源汽車共有 輛;
(2)將圖1補充完整;在圖2中,C等級所占的圓心角是 度;
(3)估計這種新能源汽車一次充電后行駛的平均里程數(shù)為多少千米?(精確到千米)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com