【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點OBD2AD,E、F、G分別是OCOD、AB的中點,下列結(jié)論:①BEAC②EGEF;EFG≌△GBE;④EA平分∠GEF;四邊形BEFG是菱形.其中正確的個數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】

證明△BCO是等腰三角形即可證明①正確;由EG=ABEF=AB可證②成立;由中點的性質(zhì)可得出EFCD,且EF=CD=BG,結(jié)合平行即可證得③結(jié)論成立;由三線合一可證明④成立;無法證明⑤成立;此題得解.

∵四邊形ABCD是平行四邊形,

BD2BO,AD=BC,

BD2AD

BD2BC,

BO=BC,

EOC中點,

BEAC,故①成立;

BEAC,GAB中點,

EG=AB,

E、F分別是OCOD的中點,
EFCD,且EF=CD,

∵四邊形ABCD為平行四邊形,
ABCD,且AB=CD,

EF=AB

EF=EG,故②成立;

ABCDEFCD,

EFAB,

∴∠FEG=BGE(兩直線平行,內(nèi)錯角相等),

在△EFG和△GBE中,

BG=FE,∠FEG=BGE,GE=EG

∴△EFG≌△GBESAS),即③成立;

BG=FE,EFAB,

∴四邊形BEFG是平行四邊形,

BEAC,

GFAC

EF=EG,

∴∠AEG=AEF,

EA平分∠GEF

故④正確,

若四邊形BEFG是菱形

BEBGAB,

∴∠BAC30°

與題意不符合

故⑤錯誤

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ACBC2,∠C90°,將一塊等腰三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線ACCBD、E兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況,研究:

1)三角板繞點P旋轉(zhuǎn),觀察線段PDPE之間有什么數(shù)量關(guān)系?并結(jié)合圖②說明理由.

2)三角板繞點P旋轉(zhuǎn),△PCE是否能成為等腰三角形?若能,指出所有情況(即寫出△PCE為等腰三角形時BE的長);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線l1:y=﹣x+n過點A(﹣1,3),雙曲線C:y= (x>0),過點B(1,2),動直線l2:y=kx﹣2k+2(常數(shù)k<0)恒過定點F.

(1)求直線l1 , 雙曲線C的解析式,定點F的坐標;
(2)在雙曲線C上取一點P(x,y),過P作x軸的平行線交直線l1于M,連接PF.求證:PF=PM.
(3)若動直線l2與雙曲線C交于P1 , P2兩點,連接OF交直線l1于點E,連接P1E,P2E,求證:EF平分∠P1EP2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,對角線ACBD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是(  )

A. OAOC,OBODB. OAOCABCD

C. ABCD,OAOCD. ADB=∠CBD,∠BAD=∠BCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于F,∠A=90°,EG//BC,且G,下列結(jié)論:①;②平分;③;④;其中正確的結(jié)論是( )

A.只有①③B.只有①③④C.只有②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)a0,a1,a2,a3a4,滿足下列條件:a00,a1=﹣|a0+1|a2=﹣|a1+2|,a3=﹣|a2+3|,以此類推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角三角形ABC的邊AB和AC上的高線CE和BF相交于點D.請寫出圖中的一對相似三角形,如

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從數(shù)軸上的原點開始,先向左移動2cm到達A點,再向左移動4cm到達B點,然后向右移動10cm到達C點.

1)用1個單位長度表示1cm,請你在題中所給的數(shù)軸上表示出A、BC三點的位置;

2)把點C到點A的距離記為CA,則CA______cm;

3)若點B以每秒3cm的速度向左移動,同時A、C點以每秒lcm、5cm的速度向右移動,設(shè)移動時間為tt0)秒,試探究CAAB的值是否會隨著t的變化而改變?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線于點是直角三角形,且∠=90°,斜邊交直線于點平分∠,∠的平分線交的延長線于點,∠=36°.

(1)如圖1,當時,求∠的度數(shù).

(2)如圖2,當點旋轉(zhuǎn)一定的角度(即不平行),其他條件不變,問∠的度數(shù)是否發(fā)生改變?請說明理由.

查看答案和解析>>

同步練習冊答案