【題目】在△ABC內(nèi)一點P滿足PA=PB=PC,則點P一定是△ABC的( )
A. 三邊垂直平分線的交點 B. 三條內(nèi)角平分線的交點
C. 三條高的交點 D. 三條中線的交點
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的對角線OB,AC相交于點D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】威麗商場銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元;售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線 , ,過點(1,0)作x軸的垂線交 于點A1 , 過點A1作y軸的垂線交 于點A2 , 過點A2作x軸的垂線交 于點A3 , 過點A3作y軸的垂線交 于點A4 , …依次進行下去,則點A2015的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)若點是軸上的一點,且以為頂點的三角形與相似,求點的坐標;
(3)如圖2,軸瑋拋物線相交于點,點是直線下方拋物線上的動點,過點且與軸平行的直線與,分別交于點,,試探究當點運動到何處時,四邊形的面積最大,求點的坐標及最大面積;
(4)若點為拋物線的頂點,點是該拋物線上的一點,在軸,軸上分別找點,,使四邊形的周長最小,求出點,的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,等腰直角三角形ABC的頂點A的坐標為 ,C的坐標為 ,直角頂點B在第四象限,線段AC與x軸交于點D.將線段DC繞點D逆時針旋轉90°至DE.
(1)直接寫出點B、D、E的坐標并求出直線DE的解析式.
(2)如圖②,點P以每秒1個單位的速度沿線段AC從點A運動到點C的過程中,過點P作與x軸平行的直線PG,交直線DE于點G,求與△DPG的面積S與運動時間t的函數(shù)關系式,并求出自變量t的取值范圍.
(3)如圖③,設點F為直線DE上的點,連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FE以每秒 個單位的速度運動到E后停止.當點F的坐標是多少時,是否存在點M在整個運動過程中用時最少?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道一次函數(shù) 與 的圖象關于 軸對稱,所以我們定義:函數(shù) 與 互為“鏡子”函數(shù).
(1)請直接寫出函數(shù) 的“鏡子”函數(shù)
(2)如果一對“鏡子”函數(shù) 與 的圖象交于點 ,且與 軸交于 、 兩點,如圖所示,若 ,且 的面積是 ,求這對“鏡子”函數(shù)的解析式.
(3)若點 是 軸上的一個動點,當 為等腰三角形時,直接寫出點 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點C為直線y=x上在第一象限內(nèi)一點,直線y=2x+1交y軸于點A,交x軸于B,將直線AB沿射線OC方向平移 個單位,則平移后直線的解析式為。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com