13.已知代數(shù)式(2x2+ax-y+6)-(2bx2-3x+5y-1),若此代數(shù)式的值與字母x的取值無(wú)關(guān),則a=-3,b=1.

分析 先去括號(hào),再合并同類(lèi)項(xiàng),令x的系數(shù)等于0即可.

解答 解:原式=2x2+ax-y+6-2bx2+3x-5y+1
=(2-2b)x2+(a+3)x-6y+7.
∵此代數(shù)式的值與字母x的取值無(wú)關(guān),
∴2-2b=0,a+3=0,∴a=-3,b=1.
故答案為:-3,1.

點(diǎn)評(píng) 本題考查的是整式的加減,熟知整式的加減實(shí)質(zhì)上就是合并同類(lèi)項(xiàng)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在△ABC中,BA=BC,∠BAC=α,M是AC的中點(diǎn),P是線段BM上的動(dòng)點(diǎn),將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)2α得到線段PQ.
(1)若α=60°,且點(diǎn)P與點(diǎn)M重合(如圖1),線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,此時(shí)∠CDB的度數(shù)為30°
(2)在圖2中,點(diǎn)P不與點(diǎn)B、M重合,線段CQ的延長(zhǎng)線交射線BM于點(diǎn)D,則∠CDB的度數(shù)為(用含α的代數(shù)式表示)90°-α.
(3)對(duì)于適當(dāng)大小的α,當(dāng)點(diǎn)P在線段BM上運(yùn)動(dòng)到某一位置(不與點(diǎn)B、M重合)時(shí),能使得線段CQ的延長(zhǎng)線與射線BM交于點(diǎn)D,且PQ=DQ,則α的取值范圍是45°<α<60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.興平市在“雙高雙普”中,為了提高全市師生閱讀量,共購(gòu)買(mǎi)圖書(shū)達(dá)4640萬(wàn)冊(cè),4640萬(wàn)冊(cè)用科學(xué)記數(shù)法表示為(  )
A.0.464×109冊(cè)B.4.64×108冊(cè)C.4.64×107冊(cè)D.46.4×107冊(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解方程:$\frac{2x-5}{4}=\frac{3-x}{8}-1$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.-$\frac{3}{4}$、-$\frac{5}{6}$、-$\frac{7}{8}$的大小順序是( 。
A.-$\frac{7}{8}$<-$\frac{5}{6}$<-$\frac{3}{4}$B.-$\frac{7}{8}$<-$\frac{3}{4}$<-$\frac{5}{6}$C.-$\frac{5}{6}$<-$\frac{7}{8}$<-$\frac{3}{4}$D.-$\frac{3}{4}$<-$\frac{7}{8}$<-$\frac{5}{6}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,已知直線l1∥l2,直線l3和直線l1、l2分別交于點(diǎn)C和點(diǎn)D,P為直線l3上一點(diǎn),A、B分別是直線l1、l2上的定點(diǎn).設(shè)∠CAP=∠1,∠APB=∠2,∠DBP=∠3.
(1)若P點(diǎn)在線段CD(C、D兩點(diǎn)除外)上運(yùn)動(dòng)時(shí),問(wèn)∠1、∠2、∠3之間的關(guān)系是什么?說(shuō)明理由.
(2)在l1∥l2的前提下,若P點(diǎn)在線段CD之外時(shí),∠1、∠2、∠3之間的關(guān)系又怎樣?直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

5.如果點(diǎn)P(4,b)在函數(shù)y=$\sqrt{x-1}$的圖象上,那么b=$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知2A-B=3a2-3ab,且A=4a2-6ab-5.
(1)求B等于多少?
(2)若|a+1|+(b-2)2=0,求B的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖.在平面直角坐標(biāo)系中,點(diǎn)A(3,0),B(0,-4),C是x軸上一動(dòng)點(diǎn),過(guò)C作CD∥AB交y軸于點(diǎn)D.
(1)$\frac{OC}{OD}$值是$\frac{3}{4}$.
(2)若以A,B,C,D為頂點(diǎn)的四邊形的面積等于54,求點(diǎn)C的坐標(biāo).
(3)將△AOB繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△AO′B′,設(shè)D的坐標(biāo)為(0,n),當(dāng)點(diǎn)D落在△AO′B′內(nèi)部(包括邊界)時(shí),求n的取值范圍.(直接寫(xiě)出答案即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案