【題目】如圖1,拋物線,經過A(1,0)、B(7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點M,是S△ABM=S△ABC?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)如圖2,E是線段AC上的動點,F是線段BC上的動點,AF與BE相交于點P.
①若CE=BF,試猜想AF與BE的數量關系及∠APB的度數,并說明理由;
②若AF=BE,當點E由A運動到C時,請直接寫出點P經過的路徑長(不需要寫過程).
【答案】(1);(2)點M的坐標為(9,4)或(﹣1,4);(3)①AF=BE,∠APB=120°;②或.
【解析】解:(1)根據題意,可設拋物線的解析式為y=ax2+bx+.
∵將點A、B的坐標代入得: 解得:a=,b=﹣2,
∴拋物線的解析式為y=x2﹣2x+.
(2)存在點M,使得S△AMB=S△ABC.
理由:如圖所示:過點C作CK⊥x軸,垂足為K.
∵△ABC為等邊三角形,
∴AB=BC=AC=6,∠ACB=60°.
∵CK⊥AB,
∴KA=BK=3,∠ACK=30°.
∴CK=3.
∴S△ABC=ABCK=×6×3=9.
∴S△ABM=×=12.
設M(a,a2﹣2a+).
∴AB|yM|=12,即×6×(a2﹣2a)=12.
解得=9, =﹣1.
∴M1(9,4),M2(﹣1,4).
(3)①結論:AF=BE,∠APB=120°.
理由:如圖所示;
∵△ABC為等邊三角形,
∴BC=AB,∠C=∠ABF.
∵在△BEC和△AFB中, ,
∴△BEC≌△AFB.
∴AF=BE,∠CBE=∠BAF.
∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.
∴∠APB=180°﹣∠PAB﹣∠ABP=180°﹣60°=120°.
②點P經過的路徑長為或3.
科目:初中數學 來源: 題型:
【題目】某職業(yè)高中機電班共有學生42人,其中男生人數比女生人數的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學生,經測試,該班男、女生每天能加工的零件數分別為50個和45個,為保證他們每天加工的零件總數不少于1460個,那么至少要招錄多少名男學生?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場投入13800元資金購進甲、乙兩種礦泉水共500箱,礦泉水的成本價和銷售價如表所示:
類別/單價 | 成本價 | 銷售價(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場購進甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場共獲得利潤多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年12月29日至31日,黔南州第十屆旅游產業(yè)發(fā)展大會在“中國長壽之鄉(xiāng)”﹣﹣羅甸縣舉行,從中尋找到商機的人不斷涌現,促成了羅甸農民工返鄉(xiāng)創(chuàng)業(yè)熱潮,某“火龍果”經營戶有A、B兩種“火龍果”促銷,若買2件A種“火龍果”和1件B種“火龍果”,共需120元;若買3件A種“火龍果”和2件B種“火龍果”,共需205元.
(1)設A,B兩種“火龍果”每件售價分別為a元、b元,求a、b的值;
(2)B種“火龍果”每件的成本是40元,根據市場調查:若按(1)中求出的單價銷售,該“火龍果”經營戶每天銷售B種“火龍果”100件;若銷售單價每上漲1元,B種“火龍果”每天的銷售量就減少5件.
①求每天B種“火龍果”的銷售利潤y(元)與銷售單價(x)元之間的函數關系?
②求銷售單價為多少元時,B種“火龍果”每天的銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,AB的垂直平分線DE交AB、AC于E、D.
(1)若△BCD的周長為8,求BC的長;
(2)若∠A=40°,求∠DBC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把(sinα)2記作sin2α,根據圖1和圖2完成下列各題.
(1)sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;
(2)觀察上述等式猜想:在Rt△ABC中,∠C=90°,總有sin2A+cos2A= ;
(3)如圖2,在Rt△ABC中證明(2)題中的猜想:
(4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com