【題目】已知,中,,,點(diǎn)為邊中點(diǎn),連接,點(diǎn)為的中點(diǎn),線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連接,.
(1)如圖1,當(dāng)時,請直接寫出的值;
(2)如圖2,當(dāng)時,(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請寫出正確的結(jié)論,并說明理由;
(3)如圖3,當(dāng)時,請直接寫出的值(用含的三角函數(shù)表示).
【答案】(1);(2)不成立,,理由見解析;(3).
【解析】
(1)如圖1(見解析),先根據(jù)中位線定理得出,再根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)得出,,,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,由此即可得出答案;
(2)如圖2(見解析),先根據(jù)中位線定理、等腰三角形的三線合一得出,再根據(jù)等腰直角三角形的性質(zhì)得出,,然后根據(jù)相似三角形的判定與性質(zhì)可得,,從而可得,最后根據(jù)相似三角形的判定與性質(zhì)可得,據(jù)此利用正弦三角函數(shù)值即可得;
(3)如圖3(見解析),參照題(2)的思路,先根據(jù)相似三角形的判定與性質(zhì)得出,再在中,利用正弦三角函數(shù)值即可得.
(1)如圖1,取AC的中點(diǎn)G,連接EG,則
點(diǎn)為的中點(diǎn)
是的中位線
,即
由旋轉(zhuǎn)的性質(zhì)可知,,
是等邊三角形
,
,
是等邊三角形
點(diǎn)為邊中點(diǎn)
,
在和中,
;
(2)不成立,,理由如下:
如圖2,連接,取的中點(diǎn),連接
∵是的中點(diǎn)
∴
∴
∵
是等腰三角形
∵是中點(diǎn),
∴,,
∴
∴
當(dāng)時,則
和為等腰直角三角形
∴,即
∴,
∴
∴,
∵
∴
∴
∴
在中,,即
則;
(3),求解過程如下:
如圖3,連接,取的中點(diǎn),連接
參照(2),同理可得:,,
當(dāng)時,則
,(旋轉(zhuǎn)的性質(zhì))
和為等腰三角形
∴
又
∴
∴
∴,
∵
∴
∴
∴
在中,
即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)前夕,某批發(fā)部從廠家購進(jìn)A、B兩種禮盒,已知購進(jìn)2個A禮盒和3個B禮盒共花520元;購進(jìn)3個A禮盒和2個B禮盒共花費(fèi)480元.
(1)求A、B兩種禮盒的單價分別是多少元?
(2)該批發(fā)部經(jīng)理購進(jìn)這兩種禮盒恰好用去4800元購進(jìn)A種禮盒最多18個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?
(3)已知銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使A、B兩種禮盒全部售出后所有方案獲利均相同,m的值應(yīng)是多少?此時這個批發(fā)部獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動,則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,,以B為頂點(diǎn),作交延長線于點(diǎn)E.
(1)求證:四邊形是矩形;
(2)若,,點(diǎn)P從點(diǎn)E出發(fā),沿方向,以每秒1個單位的速度向終點(diǎn)B運(yùn)動;點(diǎn)Q從點(diǎn)D出發(fā),沿方向,以每秒2個單位的速度向終點(diǎn)A運(yùn)動,兩點(diǎn)同時出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)后,另一點(diǎn)隨之停止運(yùn)動.設(shè)運(yùn)動時間為.
①若是等腰三角形,求t的值;
②若,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+4與拋物線y=﹣x2+bx+c(b,c是常數(shù))交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.設(shè)拋物線與x軸的另一個交點(diǎn)為點(diǎn)C.
(1)求該拋物線的解析式;
(2)P是拋物線上一動點(diǎn)(不與點(diǎn)A、B重合),
①如圖2,若點(diǎn)P在直線AB上方,連接OP交AB于點(diǎn)D,求的最大值;
②如圖3,若點(diǎn)P在x軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)E或F恰好落在y軸上,直接寫出對應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】能夠成為直角三角形三邊長的三個正整數(shù)稱為勾股數(shù),世界上第一次給出勾股數(shù)公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,共勾股數(shù)的公式為:,其中是互質(zhì)的奇數(shù).
(1)當(dāng)時,求這個三角形的面積;
(2)當(dāng)時,計算三角形的周長(用含的代數(shù)式表示),并直接寫出符合條件的三角形的周長值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=3,BC=4,將矩形ABCD沿對角線BD折疊點(diǎn)C落在點(diǎn)E的位置,則AE的長度為( )
A.B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)三年級到六年級的全體學(xué)生參加“禮儀”知識測試,現(xiàn)將有關(guān)數(shù)據(jù)整理后繪制成如下“年級人數(shù)統(tǒng)計圖”和尚未全部完成的“成績情況統(tǒng)計表”根據(jù)圖表中提供的信息,回答下列問題:
成績 | 100分 | 90分 | 80分 | 70分 | 60分 |
人數(shù) | 21 | 40 | 5 | ||
頻率 |
|
(1)測試學(xué)生中,成績?yōu)?/span>80分的學(xué)生人數(shù)有___名;眾數(shù)是___分;中位數(shù)是___分;
若該小學(xué)三年級到六年級共有1800名學(xué)生,則可估計出成績?yōu)?/span>70分的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com