【題目】如圖①,四邊形OACB為長(zhǎng)方形,A(﹣60),B04),直線l為函數(shù)y=﹣2x5的圖象.

1)點(diǎn)C的坐標(biāo)為

2)若點(diǎn)P在直線l上,△APB為等腰直角三角形,∠APB90°,求點(diǎn)P的坐標(biāo);

小明的思考過(guò)程如下:

第一步:添加輔助線,如圖②,過(guò)點(diǎn)PMNx軸,與y軸交于點(diǎn)N,與AC的延長(zhǎng)線交于點(diǎn)M;

第二步:證明△MPA≌△NBP

第三步:設(shè)NBm,列出關(guān)于m的方程,進(jìn)而求得點(diǎn)P的坐標(biāo).

請(qǐng)你根據(jù)小明的思考過(guò)程,寫(xiě)出第二步和第三步的完整解答過(guò)程;

3)若點(diǎn)P在直線l上,點(diǎn)Q在線段AC上(不與點(diǎn)A重合),△QPB為等腰直角三角形,直接寫(xiě)出點(diǎn)P的坐標(biāo).

【答案】1)(﹣6,4);(2)(﹣55),見(jiàn)解析;(3)(﹣3,1)或(﹣7,9

【解析】

(1)根據(jù)矩形的性質(zhì)可以求得.
(2)由△MPA≌△NBP列出方程即可求解.

(3)分三種情形討論①,利用圖1即可求出.
,利用圖2即可求出.
,利用圖3即可求出.

解:(1)∵四邊形AOBC是矩形,

,

∴點(diǎn)C的坐標(biāo)為

故答案為C

2)根據(jù)題意得:,

為等腰直角三角形,

,

,

,

,

中,

,

,

設(shè),則,

,

解得:,

∴點(diǎn)P的坐標(biāo)為;

3)設(shè)點(diǎn)Q的坐標(biāo)為

3種情況討論:

①當(dāng)時(shí),如右圖,過(guò)點(diǎn)P軸于點(diǎn)M,點(diǎn)Q軸于點(diǎn)N

,

,

中,

,

,

代入,解得:,

此時(shí)點(diǎn)Q不在線段AC時(shí),不合題意,舍棄.

②當(dāng)時(shí),

若點(diǎn)PBQ上方,即為(2)的情況,此時(shí)點(diǎn)Q與點(diǎn)A重合,由于題設(shè)中規(guī)定點(diǎn)Q不與點(diǎn)A重合,故此種情況舍去;

若點(diǎn)PBQ下方,如右圖,過(guò)點(diǎn)P于點(diǎn)N,作軸于點(diǎn)M,

設(shè),

中,

,

,

P坐標(biāo)代入,得,

解得:.

此時(shí)點(diǎn)P的坐標(biāo)為;

③當(dāng)時(shí)如右圖,過(guò)點(diǎn)Q軸于點(diǎn)M,過(guò)點(diǎn)P垂足為N,

設(shè),

,

中,

,

,

,

P坐標(biāo)代入,得:,

解得:,此時(shí)點(diǎn)P的坐標(biāo)為,

綜上所述,點(diǎn)P的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以RtABC的直角邊AC,斜邊AB為邊向外作等邊三角形△ACD和△ABE,FAB的中點(diǎn),連接DF,EF,∠ACB90°,∠ABC30°.則以下4個(gè)結(jié)論:①ACDF;②四邊形BCDF為平行四邊形;③DA+DFBE;④其中,正確的 是(  )

A.只有①②B.只有①②③C.只有③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,點(diǎn)DAB上,DE⊥EB

1)求證:AC△BDE的外接圓的切線;

2)若AD=2,AE=6,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】PQN中,若∠PQαα≤25°),則稱PQN差角三角形”,且∠P Q差角”.

1)已知ABC是等邊三角形,判斷ABC是否為差角三角形,并說(shuō)明理由;

2)在ABC中,∠C90°,50°≤B≤70°,判斷ABC是否為差角三角形,若是,請(qǐng)寫(xiě)出所有的差角并說(shuō)明理由;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,是對(duì)角線,,延長(zhǎng)的延長(zhǎng)線于點(diǎn).

1)求證:;

2)若,求的值;

3)過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn),連接.設(shè),點(diǎn)是直線上的動(dòng)點(diǎn),當(dāng)的值最小時(shí),點(diǎn)與點(diǎn)是否可能重合?若可能,請(qǐng)說(shuō)明理由并求此時(shí)的值(用含的式子表示);若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,EAC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,ADBE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,AC=5,DAB=DCB=90°,則四邊形ABCD的面積為(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖a,網(wǎng)格中的每一個(gè)正方形的邊長(zhǎng)為1,△ABC為格點(diǎn)三角形,直線MN為格點(diǎn)直線(點(diǎn)A、B、C、M、N在小正方形的頂點(diǎn)上).

1)僅用直尺在圖a中作出△ABC關(guān)于直線MN的對(duì)稱圖形△A′B′C′.

2)如圖b,僅用直尺將網(wǎng)格中的格點(diǎn)三角形ABC的面積三等分,并將其中的一份用鉛筆涂成陰影.

3)如圖c,僅用直尺作三角形ABC的邊AC上的高,簡(jiǎn)單說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)置了兩種促銷方式.一種方式是:讓顧客通過(guò)轉(zhuǎn)轉(zhuǎn)盤獲得購(gòu)物券.規(guī)定顧客每購(gòu)買100元的商品,就能獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)100元、50元、20元的相應(yīng)區(qū)域,那么顧客就可以分別獲得100元、50元、20元購(gòu)物券,憑購(gòu)物券可以在該商場(chǎng)繼續(xù)購(gòu)物;如果指針對(duì)準(zhǔn)其他區(qū)域,那么就不能獲得購(gòu)物券.另一種方式是:不轉(zhuǎn)轉(zhuǎn)盤,顧客每購(gòu)買100元的商品,可直接獲得10元購(gòu)物券.據(jù)統(tǒng)計(jì),一天中共有1 000人次選擇了轉(zhuǎn)轉(zhuǎn)盤的方式,其中指針落在100元、50元、20元的次數(shù)分別為50次、100次、200.

(1)指針落在不獲獎(jiǎng)區(qū)域的概率約是多少?

(2)通過(guò)計(jì)算說(shuō)明選擇哪種方式更合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案