【題目】如圖,已知△ABC中,AB=AC,BD、CE是高,BD與CE相交于點(diǎn)O
(1)求證:OB=OC;
(2)若∠ABC=50°,求∠BOC的度數(shù).
【答案】
(1)證明:∵AB=AC,
∴∠ABC=∠ACB,
∵BD、CE是△ABC的兩條高線,
∴∠BEC=∠BDC=90°
∴△BEC≌△CDB
∴∠DBC=∠ECB,BE=CD
在△BOE和△COD中
∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°
∴△BOE≌△COD,
∴OB=OC
(2)∵∠ABC=50°,AB=AC,
∴∠A=180°﹣2×50°=80°,
∴∠DOE+∠A=180°
∴∠BOC=∠DOE=180°﹣80°=100°
【解析】(1)首先根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB,然后利用高線的定義得到∠ECB=∠DBC,從而得證;(2)首先求出∠A的度數(shù),進(jìn)而求出∠BOC的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠ACB=30°,BC=8,以BC為邊,在△ABC外作等邊△BCD,點(diǎn)E為BC中點(diǎn),連接AE并延長交CD于點(diǎn)F.
(1)求證:四邊形ABDF是平行四邊形;
(2)如圖2,將圖1中的ABCD折疊,使點(diǎn)D和點(diǎn)A重合,折痕為GH,求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(a+1,b-1)在第二象限,則點(diǎn)B(-a,b+2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個兩位數(shù),十位上數(shù)字是x,個位上數(shù)字是y,若把十位上數(shù)字和個位上數(shù)字對調(diào),所得的兩位數(shù)是 ( )
A. yx B. y+x C. 10y+x D. 10x+y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動小組在學(xué)習(xí)了“利用三角函數(shù)測高”后.選定測量小河對岸一幢建筑物BC的高度.他們先在斜坡上的D處,測得建筑物頂?shù)难鼋菫?0°.且D離地面的高度DE=5m,坡底EA=10m,然后在A處測得建筑物頂B的仰角是50°,點(diǎn)E、A、C在同一水平線上,求建筑物BC的高.(結(jié)果保留整數(shù),參考數(shù)據(jù)tan50°=1.1918,cos50°=0.6428)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在△ABC中,CA=CB,∠ACB=90°,E,F(xiàn)分別是CA,CB邊的三等分點(diǎn),將△ECF繞點(diǎn)C逆時針旋轉(zhuǎn)α角(0°<α<90°),得到△MCN,連接AM,BN.
(1)求證:AM=BN;
(2)當(dāng)MA∥CN時,試求旋轉(zhuǎn)角α的余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P是△ABC內(nèi)部的一點(diǎn).
(1)度量AB,AC,PB,PC的長,根據(jù)度量結(jié)果比較AB+AC與PB+PC的大小.
(2)改變點(diǎn)P的位置,上述結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com