【題目】如圖,在中,,,、分別在、上,連接、交于點,且.
(1)如圖1,求證:.
(2)如圖2,是的中點,試探討與的位置關系.
(3)如圖3,、分別是、的中點,若,,求的面積.
【答案】(1)見解析;(2)AE⊥CF,理由見解析;(3).
【解析】
(1)直接判斷出△ACE≌△BCD即可得出結論;
(2)先判斷出∠BCF=∠CBF,進而得出∠BCF=∠CAE,即可得出結論;
(3)先求出BD=3,進而求出CF=,同理:EG=,再利用等面積法求出ME,進而求出GM,最后用面積公式即可得出結論.
解:(1)在△ACE和△BCD中,
,
∴△ACE≌△BCD,
∴∠CAE=∠CBD;
(2)如圖2,記AE與CF的交點為M,
在Rt△BCD中,點F是BD的中點,
∴CF=BF,
∴∠BCF=∠CBF,
由(1)知,∠CAE=∠CBD,
∴∠BCF=∠CAE,
∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,
∴∠AMC=90°,
∴AE⊥CF;
(3)如圖3,記AE與CF的交點為M,
∵AC=2 ,
∴BC=AC=2,
∵CE=1,
∴CD=CE=1,
在Rt△BCD中,根據(jù)勾股定理得,BD==3,
∵點F是BD中點,
∴CF=DF= ,
同理:EG=,
連接EF,過點F作FH⊥BC,
∵∠ACB=90°,點F是BD的中點,
∴FH=,
∴S△CEF=CEFH=×1×=,
由(2)知,AE⊥CF,
∴S△CEF=CFME=×ME=ME,
∴ME=,
∴ME=,
∴GM=EG-ME=,
∴S△CFG=CFGM=××.
科目:初中數(shù)學 來源: 題型:
【題目】已知AB是⊙O的直徑,⊙O過BC的中點D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某電信公司計劃在A,B兩鄉(xiāng)鎮(zhèn)間的E處修建一座5G信號塔,且使C,D兩個村莊到E的距離相等.已知AD⊥AB于點A,BC⊥AB于點B,AB=80km,AD=50km,BC=30km,求5G信號塔E應該建在離A鄉(xiāng)鎮(zhèn)多少千米的地方?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,AB∥OC,A(0,3),B(a,b),C(c,0),且a,c滿足.點P從點A出發(fā),以每秒1個單位長度的速度向點B運動,點Q從點O同時出發(fā),以每秒2個單位長度的速度向點C運動,當點Q到達點C時,點P隨之停止運動.設運動時間為t(秒).
(1)B,C兩點的坐標為:B ,C ;
(2)當t為何值時,四邊形PQCB是平行四邊形?
(3)D為線段AB的中點,求當t為何值時,△ADQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校把一塊三角形的廢地開辟為動物園,如圖所示,測得AC=80m,BC=60m,AB=100m.
(1)若入口E在邊AB上,且與A、B等距離,求入口E到出口C的最短距離;
(2)若線段CD是一條小渠,且點D在邊AB上.點D距點A多遠時,水渠的距離最短?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求a的值,并寫出拋物線的表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,
①當點M(2,n)時,求n,并求△ABM的面積.
②當點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值和此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=β度,∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線交于點A2,得∠A2,…∠A2017BC與∠A2017CD的平分線交于點A2018,得∠A2018.則∠A2018=_____度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com