【題目】已知AB是⊙O的直徑,OBC的中點(diǎn)DDE垂直ACE

1)求證AB=AC

2)求證DEO的切線;

3)若AB=13,BC=10DE的長

【答案】1)證明見解析;(2)證明見解析;(3

【解析】試題分析:(1)連結(jié)AD,如圖,由圓周角定理得到ADB=90°,則ADBC,加上BD=CD,即AD垂直平分BC,所以AB=AC

2)連結(jié)OD,如圖,先證明ODABC的中位線,根據(jù)三角形中位線性質(zhì)得ODAC,而DEAC,所以ODDE,于是根據(jù)切線的判定定理可得DEO的切線;

3)易得BD=DC=BC=5,AC=AB=13由勾股定理得到AD=12,再用面積法求出DE的長

試題解析:解:1)連結(jié)AD,如圖,ABO的直徑,∴∠ADB=90°ADBC,DBC的中點(diǎn),BD=CDAB=AC;

2連結(jié)OD,如圖,OA=OB,DB=DC,ODABC的中位線,ODACDEAC,ODDE,DEO的切線;

3BD=DC= BC=5,AC=AB=13由勾股定理得:AD=12,在RtDAC中, AD*DC=AC*DE,DE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DBC邊的中點(diǎn),點(diǎn)EF分別在AC,AB上,且DEABEFBC

1)求證:CDEF;

2)已知∠ABC60°,連接BE,若BE平分∠ABC,CD6,求四邊形BDEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1已知:∠B=25°,∠BED=80°,∠D=55°.探究ABCD有怎樣的位置關(guān)系.

2)如圖2已知ABEF,試猜想∠BF,BCF之間的關(guān)系,寫出這種關(guān)系,并加以證明.

3)如圖3已知ABCD,試猜想∠1,∠2,∠3,∠4,∠5之間的關(guān)系,請直接寫出這種關(guān)系,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點(diǎn)D(5,3)在邊AB上,以C為中心,把CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)D的對應(yīng)點(diǎn)D′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組研究我國古代《算法統(tǒng)宗》里這樣一首詩:我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.詩中后兩句的意思是:如果每一間客房住7人,那么有7人無房可住;如果每一間客房住9人,那么就空出一間房.

(1)求該店有客房多少間?房客多少人?

(2)假設(shè)店主李三公將客房進(jìn)行改造后,房間數(shù)大大增加.每間客房收費(fèi)20錢,且每間客房最多入住4人,一次性定客房18間以上(含18間),房費(fèi)按8折優(yōu)惠.若詩中“眾客”再次一起入住,他們?nèi)绾斡喎扛纤悖?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本

1求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;

2求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少

3如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,請分別根據(jù)已知條件進(jìn)行推理,得出結(jié)論,并在括號內(nèi)注明理由.

①∵ ∠B=∠3(已知),∴____________.(______,______)

②∵∠1=∠D (已知),∴____________.(______,______)

③∵∠2=∠A (已知),∴____________.(______,______)

④∵∠B+∠BCE=180° (已知),∴____________.(______,______)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,、分別在、上,連接、交于點(diǎn),且

1)如圖1,求證:

2)如圖2,的中點(diǎn),試探討的位置關(guān)系.

3)如圖3,、分別是的中點(diǎn),若,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(﹣1,2),點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,ACx軸交于點(diǎn)D,當(dāng)時,則點(diǎn)C的坐標(biāo)為______

查看答案和解析>>

同步練習(xí)冊答案