【題目】RtABCRtABD中,,AC、BD相交于點G,過點ACB的延長線于點E,過點BDA的延長線于點F,AE、BF相交于點H

1)證明:ΔABD≌△BAC

2)證明:四邊形AHBG是菱形.

3)若AB=BC,證明四邊形AHBG是正方形.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)由“HL”可證明Rt△ABC≌Rt△BAD(HL);

2)由已知可得四邊形AHBG是平行四邊形,由(1)可知,可得,從而得到平行四邊形AHBG是菱形.

3)根據(jù)有一個角是直角的菱形是正方形,進行判斷即可.

解:(1,

Rt△ABC≌Rt△BAD(HL).

2,

∴四邊形AHBG是平行四邊形.

△ABC≌Rt△BAD,

,

∴平行四邊形AHBG是菱形.

3,,

是等腰直角三角形,

又∵△ABC≌△BAD,

,

,

∴菱形AHBG是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABC,AC=BC,∠A=30°,DAB邊上且ADC=45°.

(1)BCD的度數(shù);

(2)將圖中的BCD繞點B順時針旋轉(zhuǎn),得到BCD.當(dāng)點D恰好落在BC邊上時如圖所示,連接CC并延長交AB于點E

CCB的度數(shù)

求證CBD′≌CAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上分別表示有理數(shù),兩點間的距離表示為.且

1)數(shù)軸上表示25的兩點之間的距離是___

數(shù)軸上表示25的兩點之間的距離是___,

數(shù)軸上表示13的兩點之間的距離是___

(2)數(shù)軸上表示x1的兩點AB之間的距離是___,如果|AB|=2,那么x=___;

(3)當(dāng)代數(shù)式|x+1|+|x2|取最小值時,相應(yīng)x的取值范圍是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O與BC交于點D,DE⊥AB,垂足為E,ED的延長線與AC的延長線交于點F。

(1)求證:DE是⊙O的切線;

(2)若⊙O的半徑為4,BE=2,求∠F的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黑螞蟻沿著大半圓從A地爬到B地,白螞蟻沿著兩個小半圓弧路線也從A地爬到B地.它們同時從A地出發(fā),讓人奇怪的是,兩只螞蟻同時爬到B地.假設(shè)ABa

1)請你幫忙裁決,兩只螞蟻誰爬得快?

2)兩只螞蟻對你的裁決很不滿意,決定到圖2中的比賽場地再比一次,依然黑螞蟻沿著大半圓爬,白螞蟻沿著小半圓爬,同時從A地出發(fā),那么請問哪只螞蟻先爬到B地?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對電視節(jié)目的喜愛情況,隨機調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目(被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個統(tǒng)計圖(不完整).請你根據(jù)圖中所提供的信息,完成下列問題:

1)本次調(diào)查的學(xué)生人數(shù)為__________,娛樂節(jié)目在扇形統(tǒng)計圖中所占圓心角的度數(shù)是__________度.

2)請將條形統(tǒng)計圖補充完整:

3)若該中學(xué)有2000名學(xué)生,請估計該校喜愛動畫節(jié)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點 對應(yīng)的數(shù)為 ,點 對應(yīng)的數(shù)為 ,且多項式 的二次項系數(shù)為 ,常數(shù)項為

1)直接寫出: ,

2)數(shù)軸上點 , 之間有一動點 ,若點 對應(yīng)的數(shù)為 ,試化簡

3)若點 從點 出發(fā),以每秒 個單位長度的速度沿數(shù)軸向右移動;同時點 從點 出發(fā),沿數(shù)軸以每秒 個單位長度的速度向左移動,到達 點后立即返回并向右繼續(xù)移動,經(jīng)過t秒后,, 兩點相距 個單位長度,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (用如圖所示的曲尺形框框(有三個方向),可以套住下表中的三個數(shù),設(shè)被框住的三個數(shù)中(第一個框框住的最小的數(shù)為a、第二個框框住的最小的數(shù)為b、第三個框框住的最小的數(shù)為c.

1)第一個框框住的三個數(shù)中最小的數(shù)為a,三個數(shù)的和是: ;第二個框框住的三個數(shù)中最小的數(shù)為b,三個數(shù)的和是: ;第三個框框住的三個數(shù)中最小的數(shù)為c,三個數(shù)的和是: ;

2)這三個框框住的數(shù)的和能是48嗎?,能,求出最小的數(shù)a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(1,4)和(3,0),點Cy軸上的一個動點,且A、B、C三點不在同一條直線上,當(dāng)ABC的周長最小時,點C的坐標(biāo)是(

A. 0,0); B. 0,1); C. 0,2); D. 0,3).

查看答案和解析>>

同步練習(xí)冊答案