【題目】如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)畫出△ABC關于y軸對稱圖形△A1B1C1;
(2)畫出將△ABC繞原點O逆時針方向旋轉90°得到的△A2B2C2;
(3)求(2)中線段OA掃過的圖形面積.
科目:初中數學 來源: 題型:
【題目】如圖1,已知點A(2,0),B(0,4),∠AOB的平分線交AB于C,一動點P從O點出發(fā),以每秒2個單位長度的速度,沿y軸向點B作勻速運動,過點P且平行于AB的直線交x軸于Q,作P、Q關于直線OC的對稱點M、N.設P運動的時間為t(0<t<2)秒.
(1)求C點的坐標,并直接寫出點M、N的坐標(用含t的代數式表示);
(2)設△MNC與△OAB重疊部分的面積為S.
①試求S關于t的函數關系式;
②在圖2的直角坐標系中,畫出S關于t的函數圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為加強防汛工作,某市對一攔水壩進行加固,如圖,加固前攔水壩的橫斷面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后攔水壩的橫斷面為梯形ABED,tanE= ,則CE的長為米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為積極響應政府提出的“綠色發(fā)展低碳出行”號召,某社區(qū)決定購置一批共享單車.經市場調查得知,購買3輛男式單車與4輛女式單車費用相同,購買5輛男式單車與4輛女式單車共需16000元.
(1)求男式單車和女式單車的單價;
(2)該社區(qū)要求男式單比女式單車多4輛,兩種單車至少需要22輛,購置兩種單車的費用不超過50000元,該社區(qū)有幾種購置方案?怎樣購置才能使所需總費用最低,最低費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個交點在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實數);⑤點(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是該拋物線上的點,則y1<y2<y3 , 正確的個數有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,把矩形OABC沿對角線AC所在直線折疊,點B落在點D處,DC與y軸相交于點E,矩形OABC的邊OC,OA的長是關于x的一元二次方程x2﹣12x+32=0的兩個根,且OA>OC.
(1)求線段OA,OC的長;
(2)求證:△ADE≌△COE,并求出線段OE的長;
(3)直接寫出點D的坐標;
(4)若F是直線AC上一個動點,在坐標平面內是否存在點P,使以點E,C,P,F為頂點的四邊形是菱形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小瑩和小博士下棋,小瑩執(zhí)圓子,小博士執(zhí)方子.如圖,棋盤中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小瑩將第4枚圓子放入棋盤后,所有棋子構成一個軸對稱圖形.他放的位置是( )
A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.
(1)求∠APB的度數;
(2)已知在燈塔P的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,
(1)將拋物線沿y軸向下平移t(t>0)個單位,當平移后的拋物線與線段OB有且只有一個交點時,則t的取值范圍是.
(2)拋物線上存在點P,使∠BCP=∠BAC﹣∠ACO,則點P的坐標為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com