某校校長暑假帶領(lǐng)該市市級“三好學(xué)生”去北京旅游.甲旅行社說:“如果校長買全票一張,則其余學(xué)生可享受半價優(yōu)惠.”乙旅行社說:“包括校長在內(nèi)的全部按全票價的6折優(yōu)惠”(即按全票的60%收費).若全票價為240元/人,
(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費為y甲,乙旅行社收費為y乙,分別計算兩家旅行社的收費(建立表達(dá)式).
(2)當(dāng)學(xué)生人數(shù)為多少時,兩家旅行社的收費一樣?
(3)就學(xué)生人數(shù)討論哪家旅行社更優(yōu)惠?
(1)y甲=240+120x, y乙=144x+144;(2)4;(3)當(dāng)x<4時,y甲>y乙,即當(dāng)學(xué)生人數(shù)小于4人時,乙旅行社更優(yōu)惠;當(dāng)x>4時,y甲<y乙,即當(dāng)學(xué)生人數(shù)多于4人時,甲旅行社更優(yōu)惠.
解析試題分析:(1)甲旅行社收費等于240加上學(xué)生人數(shù)×120,乙旅行社收費等于校長1人加學(xué)生人數(shù)×240×0.6.
(2)由甲旅行社收費等于乙旅行社收費得到方程,求解即可.
(3)由甲旅行社收費大于乙旅行社收費得到不等式,求解可得.
試題解析:(1)y甲=240+120x,y乙=(x+1)×240×60%,即y乙=144x+144.
(2)由y甲=y乙,得240+120x=144x+144,解這個方程,得x=4,即當(dāng)有4名學(xué)生時,兩家旅行社的收費一樣.
(3)由y甲>y乙得:240+120x>144x+144,
解得x<4.
故:當(dāng)x<4時,y甲>y乙,即當(dāng)學(xué)生人數(shù)小于4人時,乙旅行社更優(yōu)惠;
當(dāng)x>4時,y甲<y乙,即當(dāng)學(xué)生人數(shù)多于4人時,甲旅行社更優(yōu)惠.
考點:一次函數(shù)的應(yīng)用..
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,矩形ABCD的邊AB在x軸上,點A、B的橫坐標(biāo)分別為a+2與2a﹣5,且關(guān)于y軸對稱,BC的長為3,且點C在第三象限.
(1)求頂點A、C的坐標(biāo);
(2)若y=kx+b是經(jīng)過點B,且與AC平行的一條直線,試確定它的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,直線與y軸交于點A.
(1)如圖,直線與直線交于點B,與y軸交于點C,點B橫坐標(biāo)為.
①求點B的坐標(biāo)及k的值;
②直線與直線與y軸所圍成的△ABC的面積等于 ;
(2)直線與x軸交于點E(,0),若,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某辦公用品銷售商店推出兩種優(yōu)惠方法:①購1個書包,贈送1支水性筆;②購書包和水性筆一律按9折優(yōu)惠.書包每個定價20元,水性筆每支定價5元.小麗和同學(xué)需買4個書包,水性筆若干支(不少于4支).
(1)分別寫出兩種優(yōu)惠方法購買費用y(元)與所買水性筆支數(shù)x(支)之間的函數(shù)關(guān)系式;
(2)對x的取值情況進(jìn)行分析,說明按哪種優(yōu)惠方法購買比較便宜;
(3)小麗和同學(xué)需買這種書包4個和水性筆12支,請你設(shè)計怎樣購買最經(jīng)濟(jì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
直線y=﹣x+6與坐標(biāo)軸分別交于A、B兩點,動點P、Q同時從O點出發(fā),同時到達(dá)A點,運動停止.點Q沿線段OA運動,速度為每秒1個單位長度,點P沿路線O→B→A運動.
(1)直接寫出A、B兩點的坐標(biāo);
(2)設(shè)點Q的運動時間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)S=時,求出點P的坐標(biāo),并直接寫出以點O、P、Q為頂點的平行四邊形的第四個頂點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限的A、B兩點,與x軸交于點C.已知,,.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線y=2x+b(b<0)與坐標(biāo)軸交于A,B兩點,與雙曲線(x>0)交于D點,過點D作DC⊥x軸,垂足為C,連接OD。已知△AOB≌△ACD。
(1)如果b=-2,求k的值;
(2)試探究k與b的數(shù)量關(guān)系,并寫出直線OD的解析式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com