【題目】如圖,AB是⊙O的直徑,點C、D在圓上,,過點C作CE⊥AD交AD的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)已知BC=3,AC=4,求CE的長.
【答案】(1)見解析 (2)
【解析】
(1)連接OC,OA=OC,則∠OCA=∠OAC,再由已知條件,可得∠OCE=90°;
(2)由CE是⊙O的切線,得∠DCE=∠CAE=∠CAB,從而求得△CDE∽△ABC,△ACE∽△ABC,根據(jù)相似三角形對應(yīng)邊成比例即可求得.
(1)連接OC,
∵OA=OC,
∴∠OCA=∠OAC,
∵弧BC=弧CD,
∴DC=BC,
∴∠BAC=∠CAD,
∴∠OCA=∠CAD,
∴OC∥AE,
∵∠E=90°
∴OC⊥CE,
∴CE是⊙O的切線;
(2)∵CE是⊙O的切線,
∴∠DCE=∠CAE=∠CAB,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACB=∠E,
∴△CDE∽△ABC,△ACE∽△ABC,
∴,
∵BC=3,AC=4,
∴AB=5,CD=3,
∴,,
∴CE=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字,,,的小球,它們的形狀、大小、質(zhì)地等完全相同.小強(qiáng)先從盒子里隨機(jī)取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小強(qiáng)、小華各取一次小球所確定的點(x,y)落在一次函數(shù)的圖象上的概率;
(3)求小強(qiáng)、小華各取一次小球所確定的數(shù)x、y滿足的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上的中線CD為直徑作⊙O,與AC、BC分別交于點M、N,與AB的另一個交點為E.過點N作NF⊥AB,垂足為F.
(1)求證:NF是⊙O的切線;
(2)若NF=2,DF=1,求弦ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OC是⊙O的半徑,點D是半圓AB上一動點(不與A、B重合),連結(jié)DC交直徑AB與點E,若∠AOC=60°,則∠AED的范圍為( )
A.0°< ∠AED <180°B.30°< ∠AED <120°
C.60°< ∠AED <120°D.60°< ∠AED <150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,D是AB上一動點,連接CD,以CD為直徑的⊙M交AC于點E,連接BM并延長交AC于點F,交⊙M于點G,連接BE.
(1)求證:點B在⊙M上.
(2)當(dāng)點D移動到使CD⊥BE時,求BC:BD的值.
(3)當(dāng)點D到移動到使時,求證:AE+CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于點A(﹣2,0)
(1)填空:c= ;(用含b的式子表示)
(2)b<4.
①求證:拋物線與x軸有兩個交點;
②設(shè)拋物線與x軸的另一個交點為B,當(dāng)線段AB上恰有5個整點(橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點),求b的取值范圍;
(3)平移拋物線,使其頂點P落在直線y=3x﹣2上,設(shè)拋物線與直線的另一個交點為Q,C在該直線下方的拋物線上,求△CPQ面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=x-3交x軸于點B,交y軸于點C,拋物線經(jīng)過點A(-1,0),B,C三點,點F在y軸負(fù)半軸上,OF=OA.
(1)求拋物線的解析式;
(2)在第一象限的拋物線上存在一點P,滿足S△ABC=S△PBC,請求出點P的坐標(biāo);
(3)點D是直線BC的下方的拋物線上的一個動點,過D點作DE∥y軸,交直線BC于點E,①當(dāng)四邊形CDEF為平行四邊形時,求D點的坐標(biāo);
②是否存在點D,使CE與DF互相垂直平分?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com