20.如圖,拋物線y=x2+bx+c(c>0)與y軸交于點C,頂點為A,拋物線的對稱軸交x軸于點E,交BC于點D,tan∠AOE=$\frac{3}{2}$.直線OA與拋物線的另一個交點為B.當OC=2AD時,c的值是$\frac{9}{2}$或$\frac{27}{2}$.

分析 設A(2m,3m)、B(2n,3n),當OC=2AD時,能找出點D為線段BC中點,從而得出m、n間的關系,將A、B點坐標代入拋物線與拋物線對稱軸x=2m聯(lián)立方程組,解方程組即可求得c的值.

解答 解:由tan∠AOE=$\frac{3}{2}$,可設A、B點坐標分別為(2m,3m)、(2n,3n),
∵AD∥OC,
∴∠ADB=∠OCB,∠DAB=∠COA,
∴△BAD∽△BOC.
∵OC=2AD,
∴D點為線段BC的中點,
∵C(0,c),B(2n,3n),
∴D點橫坐標為$\frac{0+2n}{2}$=n,
由題意知A、D點均在拋物線的對稱軸上,
∴n=2m,
∴B點坐標為(4m,6m),
∵A,B在拋物線上,且拋物線對稱軸為x=2m,
∴有$\left\{\begin{array}{l}{3m=4{m}^{2}+2bm+c}\\{6m=16{m}^{2}+4bm+c}\\{-\frac{2}=2m}\end{array}\right.$,
解得$\left\{\begin{array}{l}{m=0}\\{b=0}\\{c=0}\end{array}\right.$,或$\left\{\begin{array}{l}{m=\frac{3}{4}}\\{b=-3}\\{c=\frac{9}{2}}\end{array}\right.$,
∵c>0,
∴c=$\frac{9}{2}$.
故答案為:$\frac{9}{2}$.

點評 本題考查了三角形的相似以及二次函數(shù)的性質(zhì),解題的關鍵是根據(jù)OC=2AD找到A、B點坐標的關系.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

10.用四舍五入法對3.141592取近似數(shù)并精確到0.01,得到的近似值是3.14.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

11.如果點P(1+2x,3y-2)在y軸上,則x,y應滿足的條件是(  )
A.x=$-\frac{1}{2}$,y為任意實數(shù)B.x為任意實數(shù),y=$\frac{2}{3}$
C.x=$-\frac{1}{2}$,y=$\frac{2}{3}$D.x為任意實數(shù),y=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,已知雙曲線y=$\frac{m}{x}$(m>0)與直線y=kx交于A、B兩點,點A的坐標為(3,2). 
(1)由題意可得m的值為6,k的值為$\frac{2}{3}$,點B的坐標為(-3,-2);
(2)若點P(n-2,n+3)在第一象限的雙曲線上,試求出n的值及點P的坐標;
(3)在(2)小題的條件下:如果M為x軸上一點,N為y軸上一點,以點P、A、M、N為頂點的四邊形是平行四邊形,試求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

15.如圖,某窗戶由矩形和弓形組成,已知弓形的跨度AB=6m,弓形的高EF=2m,現(xiàn)設計安裝玻璃,請幫工程師求出$\widehat{AB}$所在圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

5.若函數(shù)y=kx|k|-2的圖象是雙曲線,且圖象在第二、四象限內(nèi),那么k=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.已知關于x的一元二次方程x2-3$\sqrt{2}$x+$\frac{3}{2}$k=0有實數(shù)根,則k的取值范圍是k≤3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.已知OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6,
(1)如圖甲:在OA上選取一點D,將△COD沿CD翻折,使點O落在BC邊上,記為E.求折痕CD 所在直線的解析式;
(2)如圖乙:在OC上選取一點F,將△AOF沿AF翻折,使點O落在BC邊,記為G.
①求折痕AF所在直線的解析式;
②再作GH∥AB交AF于點H,若拋物線$y=-\frac{1}{12}{x^2}+h$過點H,求此拋物線的解析式,并判斷它與直線AF的公共點的個數(shù).
(3)如圖丙:一般地,在以OA、OC上選取適當?shù)狞cI、J,使紙片沿IJ翻折后,點O落在BC邊上,記為K.請你猜想:①折痕IJ所在直線與第(2)題②中的拋物線會有幾個公共點;②經(jīng)過K作KL∥AB與IJ相交于L,則點L是否必定在拋物線上.將以上兩項猜想在(l)的情形下分別進行驗證.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.如圖所示的暗礁區(qū),兩燈塔A,B之間的距離恰好等于圓半徑的$\sqrt{2}$倍,為了使航船(S)不進入暗礁區(qū),那么S 對兩燈塔A,B的視角∠ASB必須( 。
A.大于60°B.小于60°C.大于45°D.小于45°

查看答案和解析>>

同步練習冊答案