分析 (1)利用因式分解法即可得出點(diǎn)A,B坐標(biāo);
(2)先表示出DH,BH,再利用角平分線判斷出△BDH∽△BEG,即可得出結(jié)論;
(3)先求出點(diǎn)D,F(xiàn)坐標(biāo),進(jìn)而得出直線DF解析式,求出OP,PN,再取OA的中點(diǎn),求出MN,OM,由存在唯一一點(diǎn)得出PN和PO都和⊙M相切,即PM是∠OPN的平分線,用角平分線定理即可求出m.
解答 解:(1)由ax2-2amx-3am2=0得,x1=-m,x2=3m,
則B(-m,0),A(3m,0),
(2)$\frac{BD}{BE}$是定值,為$\frac{3}{5}$;
理由:過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EG⊥AB于G,
將點(diǎn)C(0,3)代入y=ax2-2amx-3am2得,
a=-$\frac{1}{{m}^{2}}$;
∴y=ax2-2amx-3am2=-$\frac{1}{{m}^{2}}$x2+$\frac{2}{m}$x+3,
∵CD∥AB,
∴點(diǎn)D的坐標(biāo)為(2m,3),
∴OH=-2m,DH=3,
∴BH=-3m
∵AB平分∠DBE,
∴∠DBH=∠EBG,又∠DHB=∠EGB=90°,
∴△BDH∽△BEG,
∴$\frac{BD}{BE}=\frac{DH}{EG}=\frac{BH}{BG}$,
設(shè)E(n,-$\frac{1}{{m}^{2}}$×n2+$\frac{2}{m}$×n+3),
∴OG=-n,EG=$\frac{1}{{m}^{2}}$×n2-$\frac{2}{m}$×n-3,
∴BG=-m-n,
∴$\frac{3}{\frac{1}{{m}^{2}}×{n}^{2}-\frac{2n}{m}-3}=\frac{-3m}{-m-n}$,
∴n=4m,
∴E(4m,5),
∵BH=BO+OH=-m-2m=-3m,BG=BO+OG=-m-4m=-5m,
∴$\frac{BD}{BE}=\frac{BH}{BG}=\frac{-3m}{-5m}=\frac{3}{5}$,
(3)存在,
理由:如圖2,∵B(-m,0),A(3m,0),
∴F(m,4),
∵D(2m,3),
∴直線DF的解析式為y=-$\frac{1}{m}$x+5,
∴N(5m,0),P(0,5),
∴OP=5,PN=$\sqrt{(5m)^{2}+{5}^{2}}$=5$\sqrt{{m}^{2}+1}$
取OA的中點(diǎn)M,
∵A(3m,0),N(5m,0),
∴M($\frac{3}{2}$m.0),
∴OM=-$\frac{3}{2}$m.MN=-$\frac{7}{2}$m,
假設(shè)直線DF上是存在唯一一點(diǎn)M,使得∠OMA=90°,
∴以O(shè)A為直徑的⊙M與PN,PO相切,
∴PM是∠OPN的角平分線,
∴$\frac{PN}{OP}=\frac{MN}{OM}$,
∴$\frac{5\sqrt{{m}^{2}+1}}{5}=\frac{-\frac{7}{2}m}{-\frac{3}{2}m}$,
∴m=$\frac{2\sqrt{10}}{3}$(舍)或m=-$\frac{2\sqrt{10}}{3}$.
點(diǎn)評(píng) 此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質(zhì)和判定,角平分線的性質(zhì),作出輔助線是解本題的關(guān)鍵也是難點(diǎn),此題用到方程的思想解決幾何圖形問題,是一道典型的題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com