【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學生人數(shù)為 , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

【答案】
(1)40
(2)10;20;72
(3)解:根據(jù)題意畫出樹狀圖如下:

一共有12種情況,恰好是1男1女的情況有6種,

∴P(恰好是1男1女)= =


【解析】解:(1)九(1)班的學生人數(shù)為:12÷30%=40(人), 喜歡足球的人數(shù)為:40﹣4﹣12﹣16=40﹣32=8(人),
補全統(tǒng)計圖如圖所示;

·(2)∵ ×100%=10%,
×100%=20%,
∴m=10,n=20,
表示“足球”的扇形的圓心角是20%×360°=72°;
故答案為:(1)40;(2)10;20;72;
(1)根據(jù)喜歡籃球的人數(shù)與所占的百分比列式計算即可求出學生的總?cè)藬?shù),再求出喜歡足球的人數(shù),然后補全統(tǒng)計圖即可;(2)分別求出喜歡排球、喜歡足球的百分比即可得到m、n的值,用喜歡足球的人數(shù)所占的百分比乘以360°即可;(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(9分)如圖是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標系,使A點坐標為(2,4),B點坐標為(4,2);

(2)在第二象限內(nèi)的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標是________;

(3)ABC的周長=_________(結(jié)果保留根號);

(4)畫出ABC關(guān)于關(guān)于y軸對稱的ABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC交AB于M,交AC于N,若BM+CN=9,則線段MN的長為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).

(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2
(2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=90°,ADBC,垂足為D.

(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若∠ABC的平分線分別交AD,ACP,Q兩點,證明:AP=AQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:

(1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學的數(shù)學知識說明理由;
(2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,(1)∠BED與∠CBE是直線________,________被直線________所截形成的________角;

(2)∠A與∠CED是直線________,________被直線________所截形成的________角;

(3)∠CBE與∠BEC是直線________,________被直線________所截形成的________角;

(4)∠AEB與∠CBE是直線________,________被直線________所截形成的________角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線l1;y=ax2+bx+c(a<0)經(jīng)過原點,與x軸的另一個交點為B(4,0),點A為頂點,且直線OA的解析式為y=x.

(1)如圖1,求拋物線l1的解析式;
(2)如圖2,將拋物線l1繞原點O旋轉(zhuǎn)180°,得到拋物線l2 , l2與x軸交于點B′,頂點為A′,點P為拋物線l1上一動點,連接PO交l2于點Q,連接PA、PA′、QA′、QA.
請求:平行四邊形PAQA′的面積S與P點橫坐標x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線l1或l2上是否存在一點H,使得HB=HA′?若存在,請求出點H的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,其圖象反映的過程是:張強從家去體育場,在那里鍛煉了一陣后又走到文具店去買筆,然后散步走回家,其中x表示時間,y表示張強離家的距離.根據(jù)圖象,下列回答正確的是( 。

A.張強在體育場鍛煉45分鐘
B.張強家距離體育場是4千米
C.張強從離家到回到家一共用了200分鐘
D.張強從家到體育場的平均速度是10千米/小時

查看答案和解析>>

同步練習冊答案