【題目】計算與化簡:
(1)12﹣(﹣6)+(﹣9)
(2)(﹣1)2016+(﹣4)2÷(﹣ )+|﹣1﹣2|
(3)先化簡,再求值:﹣ (4a2+2a﹣2)+(a﹣1),其中a=
(4)點P在數(shù)軸上的位置如圖所示,化簡:|p﹣1|+|p﹣2|

【答案】
(1)解:原式=12+6﹣9=18﹣9=9
(2)解:原式=1﹣12+3=4﹣12=﹣8
(3)解:原式=2a2﹣a+1+a﹣1=﹣2a2,

當x= 時,原式=﹣2× =﹣


(4)解:由圖可知:p﹣1>0,p﹣2<0,

則|p﹣1|+|p﹣2|=(p﹣1)﹣(p﹣2)=p﹣1﹣p+2=1


【解析】(1)原式利用減法法則變形,計算即可得到結(jié)果;(2)原式第一項利用乘方的意義化簡,第二項利用乘方的意義及除法法則變形,最后一項利用絕對值的代數(shù)意義化簡,計算即可得到結(jié)果;(3)原式去括號合并得到最簡結(jié)果,把a的值代入計算即可求出值;(4)根據(jù)數(shù)軸上點的位置判斷出絕對值里邊式子的正負,利用絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.
【考點精析】本題主要考查了數(shù)軸和有理數(shù)的四則混合運算的相關知識點,需要掌握數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線;在沒有括號的不同級運算中,先算乘方再算乘除,最后算加減才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點P的坐標為(x1,y1),點Q的坐標為(x2,y2),且x1x2y1y2,若P,Q為某個矩形的兩個頂點,且該矩形的邊均與某條坐標軸垂直,則稱該矩形為點P,Q的“相關矩形”,如圖為點P,Q的“相關矩形”示意圖.

(1)已知點A的坐標為(1,0),

①若點B的坐標為(3,1),求點A,B的“相關矩形”的面積;

②點C在直線x=3上,若點AC的“相關矩形”為正方形,求直線AC的表達式;

(2)正方形RSKT頂點R的坐標為(-1,1),K的坐標為(2,-2),點M的坐標為(m,3),若在正方形RSKT邊上存在一點N,使得點M,N的“相關矩形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知﹣5x2m﹣1yn與11xn+2y﹣4﹣3m的積與x7y是同類項,試求出2n﹣m﹣9的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在給定的條件中,能作出平行四邊形的是(

A. 60cm為對角線,20cm、34cm為兩條鄰邊

B. 20cm36cm為對角線,22cm為一條邊

C. 6cm為一條對角線,3cm、10cm為兩條鄰邊

D. 6cm10cm為對角線,8cm為一條邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a、b、c都是有理數(shù),那么2a﹣3b+c的相反數(shù)是(
A.3b﹣2a﹣c
B.﹣3b﹣2a+c
C.3b﹣2a+c
D.3b+2a﹣c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,l1反映了某公司的銷售收入與銷售量的關系,l2反映了該公司產(chǎn)品的銷售成本與銷售量的關系,當該公司盈利(收入大于成本)時,銷售量(  )
A.小于3t
B.大于3t
C.小于4t
D.大于4t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個賓館有二人間、三人間、四人間三種客房供游客租住,某旅行團25人準備同時租用這三種客房共9間,如果每個房間都住滿,則租房方案共有( 。
A.4種
B.3種
C.2種
D.1種

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:

租金(單位:元/臺時)

挖掘土石方量(單位:m3/臺時)

甲型挖掘機

100

60

乙型挖掘機

120

80


(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

同步練習冊答案