【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過(guò)點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.

(1)求證:△AED≌△CFD;

(2)求證:四邊形AECF是菱形.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】試題分析:(1)由作圖知:PQ為線段AC的垂直平分線,從而得到AE=CE,AD=CD,然后根據(jù)CFAB得到∠EAC=FCA,CFD=AED,利用ASA證得兩三角形全等即可;

2)根據(jù)全等得到AE=CF,然后根據(jù)EF為線段AC的垂直平分線,得到EC=EA,FC=FA,從而得到EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形.

試題解析:1)由作圖知:PQ為線段AC的垂直平分線,

AE=CE,AD=CD

CFAB

∴∠EAC=FCA,CFD=AED

∴在AEDCFD中,

EACFCA

ADCD

CFDAED

∴△AED≌△CFD;

2∵△AED≌△CFD

AE=CF

EF為線段AC的垂直平分線,

EC=EAFC=FA

EC=EA=FC=FA

∴四邊形AECF為菱形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:線段CB=6,點(diǎn)A在線段BC上,且CA=2,以AB為直徑做半圓O,點(diǎn)D為半圓O上的動(dòng)點(diǎn),以CD為邊向外作等邊△CDE.
(1)發(fā)現(xiàn):CD的最小值是 , 最大值是 , △CBD面積的最大值是
(2)思考:如圖1,當(dāng)線段CD所在直線與半圓O相切時(shí),求弧BD的長(zhǎng).
(3)探究:如圖2,當(dāng)線段CD與半圓O有兩個(gè)公共點(diǎn)D,M時(shí),若CM=DM,求等邊△CDE面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)“九宮圖”源于我國(guó)古代夏禹時(shí)期的“洛書(shū)”1所示,是世界上最早的矩陣,又稱(chēng)“幻方”,用今天的數(shù)學(xué)符號(hào)翻譯出來(lái),“洛書(shū)”就是一個(gè)三階“幻方”2所示

(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個(gè)“幻方”,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式,當(dāng)時(shí),該代數(shù)式的值為-1.

1)求的值。

2)已知當(dāng)時(shí),該代數(shù)式的值為-1,求的值。

3)已知當(dāng)時(shí),該代數(shù)式的值為9,試求當(dāng)時(shí)該代數(shù)式的值。

4)在第(3)小題已知條件下,若有成立,試比較的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說(shuō),θ能取360°;而乙同學(xué)說(shuō),θ也能取630°.甲、乙的說(shuō)法對(duì)嗎?若對(duì),求出邊數(shù)n.若不對(duì),說(shuō)明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC、BD相交于點(diǎn)O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,點(diǎn)E在BC的延長(zhǎng)線上。

(1)求證:CD∥AB;

(2)若∠D=38°,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,制作某金屬工具先將材料煅燒6分鐘溫度升到800℃,再停止煅燒進(jìn)行鍛造,8分鐘溫度降為600℃;煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí)溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系;該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作,那么鍛造的操作時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反映的是某中學(xué)九(3)班學(xué)生外出方式(乘車(chē)、步行、騎車(chē))的頻數(shù)(人數(shù))分布直方圖(部分)和扇形分布圖,那么下列說(shuō)法正確的是( 。

A. 九(3)班外出的學(xué)生共有42

B. 九(3)班外出步行的學(xué)生有8

C. 在扇形圖中,步行的學(xué)生人數(shù)所占的圓心角為82°

D. 如果該校九年級(jí)外出的學(xué)生共有500人,那么估計(jì)全年級(jí)外出騎車(chē)的學(xué)生約有140

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)問(wèn)題發(fā)現(xiàn)

如圖1,點(diǎn)E.F分別在正方形ABCD的邊BC、CD,∠EAF=45°,連接EF、則EF=BE+DF,試說(shuō)明理由;

(2)類(lèi)比引申

如圖2,在四邊形ABCD,AB=AD,∠BAD=90°,點(diǎn)E.F分別在邊BC、CD,∠EAF=45°,若∠B,D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF;

(3)聯(lián)想拓展

如圖3,在△ABC,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC,且∠DAE=45°,猜想BD、DE、EC滿足的等量關(guān)系,并寫(xiě)出推理過(guò)程。

查看答案和解析>>

同步練習(xí)冊(cè)答案