【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0),C(0,-3)
(1) 求拋物線的解析式;
(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3) 若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標;若不存在,請說明理由.
【答案】(1);(2)S△ACD的最大值為;(3)見解析.
【解析】
(1)將B、C的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式.
(2)根據A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;過點D作DE∥y軸交AC于E,則E(m,﹣m﹣3),可得到當△ADC面積有最大值時,四邊形ABCD的面積最大值,然后列出四邊形的面積與m的函數關系式,利用配方法可求得此時m的取值范圍;
(3)本題應分情況討論:①過C作x軸的平行線,與拋物線的交點符合P點的要求,此時P、C的縱坐標相同,代入拋物線的解析式中即可求出P點坐標;②將AC平移,令C點落在x軸(即E點)、A點落在拋物線(即P點)上;可根據平行四邊形的性質,得出P點縱坐標(P、C縱坐標的絕對值相等),代入拋物線的解析式中即可求得P點坐標.
解:(1)將點B、C的坐標代入拋物線的解析式得:,
解得:a=,c=﹣3.
∴拋物線的解析式為y=x2+x﹣3
(2)令y=0,則x2+x﹣3=0,解得x1=1,x2=﹣4
∴A(﹣4,0)、B(1,0)
令x=0,則y=﹣3
∴C(0,﹣3)
∴S△ABC=×5×3=
設D(m,m2+m﹣3)
過點D作DE∥y軸交AC于E.直線AC的解析式為y=﹣x﹣3,則E(m,﹣m﹣3)
DE=﹣m﹣3﹣(m2+m﹣3)=﹣(m+2)2+3
當m=﹣2時,DE有最大值為3
此時,S△ACD有最大值為×DE×4=2DE=6
∴四邊形ABCD的面積的最大值為6+=.
(3)如圖所示:
①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥AC交x軸于點E1,此時四邊形ACP1E1為平行四邊形,
∵C(0,﹣3)
∴設P1(x,﹣3)
∴x2+x﹣3=﹣3
解得x1=0,x2=﹣3
∴P1(﹣3,﹣3);
②平移直線AC交x軸于點E,交x軸上方的拋物線于點P,當AC=PE時,四邊形ACEP為平行四邊形,
∵C(0,﹣3)
∴設P(x,3),
∴x2+x﹣3=3,
解得x=或x=,
∴P2(,3)或P3(,3)
綜上所述存在3個點符合題意,坐標分別是P1(﹣3,﹣3)或P2(,3)或P3(,3).
科目:初中數學 來源: 題型:
【題目】如圖,直線分別交軸、軸于、兩點,線段上有一動點由原點向點運動,速度為每秒個單位長度,設運動時間為秒.
直接填出兩點的坐標::________,:________;
過點作直線截,使截得的三角形與相似,若當在某一位置時,滿足條件的直線共有條,的取值范圍是________;
如圖,過點作軸的垂線交直線于點,設以為頂點的拋物線與直線的另一交點為.
①用含的代數式分別表示________,________;
②隨著點運動,的長是否為定值?若是,請求出長;若不是,說明理由;
③設的邊上的高為,請直接寫出當為何值時,的值最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①②,試研究其中∠1、∠2與∠3、∠4之間的數量關系;
(2)如果我們把∠1、∠2稱為四邊形的外角,那么請你用文字描述上述的關系式;
(3)用你發(fā)現的結論解決下列問題:
如圖,AE、DE分別是四邊形ABCD的外角∠NAD、∠MDA的平分線,∠B+∠C=240°,求∠E的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中BC邊上的垂直平分線DE與∠BAC得平分線交于點E,EF⊥AB交AB的延長線于點F,EG⊥AC交于點G.
求證:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀下面的內容,再解決問題.
例題:若,求和的值.
解:∵
∴
即
∴,
∴,
問題:(1)若,求的值;
(2)已知是的三邊長,滿足,且中最長的邊的長度為,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一艘輪船以每小時40海里的速度在海面上航行,當該輪船行駛到B處時,發(fā)現燈塔C在它的東北方向,輪船繼續(xù)向北航行,30分鐘后到達A處,此時發(fā)現燈塔C在它的北偏東75°方向上,求此時輪船與燈塔C的距離.(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數.
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的坐標系中,△ABC的三個頂點的坐標分別為A(1,2),B(4,1),C(2,﹣2).
(1)請寫出△ABC關于x軸對稱的點A1,B1,C1的坐標;
(2)請在坐標系中作出△ABC關于y軸對稱的△A2B2C2;
(3)計算△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com