【題目】如圖,矩形中,,對(duì)角線、交于點(diǎn),的平分線分別交、于點(diǎn)、,連接.
(l)求的度數(shù);
(2)若,求的面積;
(3)求.
【答案】(1)75°;(2);(3)
【解析】
(1)由矩形的性質(zhì)可得AB∥CD,AO=CO=BO=DO,由角平分線的性質(zhì)和平行線的性質(zhì)可求BC=BE=BO,即可求解;
(2)過(guò)點(diǎn)H作FH⊥BC于F,由直角三角形的性質(zhì)可得FH=BF,BC=BF+BF=1,可求BH的長(zhǎng),由三角形面積公式可求△BCH的面積;
(3)過(guò)點(diǎn)C作CN⊥BO于N,由直角三角形的性質(zhì)可求BC=BF+BF=BO=BE,OH=OB-BH=BF-BF,CN=BC=BF,即可求解.
解:(1)∵四邊形ABCD是矩形
∴AB∥CD,AO=CO=BO=DO,
∴∠DCE=∠BEC,
∵CE平分∠BCD
∴∠BCE=∠DCE=45°,
∴∠BCE=∠BEC=45°
∴BE=BC
∵∠BAC=30°,AO=BO=CO
∴∠BOC=60°,∠OBA=30°
∵∠BOC=60°,BO=CO
∴△BOC是等邊三角形
∴BC=BO=BE,且∠OBA=30°
∴∠BOE=75°
(2)如圖,過(guò)點(diǎn)H作FH⊥BC于F,
∵△BOC是等邊三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=1
∴BF=,
∴FH=,
∴S△BCH=×BC×FH=;
(3)如圖,過(guò)點(diǎn)C作CN⊥BO于N,
∵△BOC是等邊三角形
∴∠FBH=60°,FH⊥BC
∴BH=2BF,FH=BF,
∵∠BCE=45°,FH⊥BC
∴CF=FH=BF
∴BC=BF+BF=BO=BE,
∴OH=OB-BH=BF-BF
∵∠CBN=60°,CN⊥BO
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+c與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A,B.
(1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;
(2)M(m,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)P,N.
①點(diǎn)M在線段OA上運(yùn)動(dòng),若以B,P,N為頂點(diǎn)的三角形與△APM相似,求點(diǎn)M的坐標(biāo);
②點(diǎn)M在x軸上自由運(yùn)動(dòng),若三個(gè)點(diǎn)M,P,N中恰有一點(diǎn)是其它兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),則稱M,P,N三點(diǎn)為“共諧點(diǎn)”.請(qǐng)直接寫出使得M,P,N三點(diǎn)成為“共諧點(diǎn)”的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)為直線上一點(diǎn), ,射線平分,設(shè).
(1)如圖①所示,若,則 .
(2)若將繞點(diǎn)旋轉(zhuǎn)至圖②的位置,試用含的代數(shù)式表示的大小,并說(shuō)明理由;
(3)若將繞點(diǎn)旋轉(zhuǎn)至圖③的位置,則用含的代數(shù)式表示的大小,即 .
(4)若將繞點(diǎn)旋轉(zhuǎn)至圖④的位置,繼續(xù)探究和的數(shù)量關(guān)系,則用含的代數(shù)式表示的大小,即 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩個(gè)角之差的絕對(duì)值等于45°,則稱這兩個(gè)角互為“半余角”,即若|∠α-∠β |=45°,則稱∠α、∠β互為半余角.(注:本題中的角是指大于0°且小于180°的角)
(1)若∠A=80°,則∠A的半余角的度數(shù)為 ;
(2)如圖1,將一長(zhǎng)方形紙片ABCD沿著MN折疊(點(diǎn)M在線段AD上,點(diǎn)N在線段CD上)使點(diǎn)D落在點(diǎn)D′處,若∠AMD′與∠DMN互為“半余角”,求∠DMN的度數(shù);
(3)在(2)的條件下,再將紙片沿著PM折疊(點(diǎn)P在線段BC上),點(diǎn)A、B分別落在點(diǎn)A′、B′處,如圖2.若∠AMP比∠DMN大5°,求∠A′MD′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=60°.G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF,下列說(shuō)法不正確的是( )
A. 四邊形CEDF是平行四邊形
B. 當(dāng)時(shí),四邊形CEDF是矩形
C. 當(dāng)時(shí),四邊形CEDF是菱形
D. 當(dāng)時(shí),四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解的過(guò)程:
解:設(shè)x2-2x=y
原式=y (y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2-2x+1)2 (第四步)
請(qǐng)問(wèn):
(1)該同學(xué)因式分解的結(jié)果是否徹底? (填“徹底”或“不徹底”),若不徹底,則該因式分解的最終結(jié)果為 ;
(2)請(qǐng)你模仿上述方法,對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備為七年級(jí)學(xué)生開設(shè)共6門選修課,選取了若干學(xué)生進(jìn)行了我最喜歡的一門選修課調(diào)查,將調(diào)查結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖表(不完整).
選修課 | ||||||
人數(shù) | 40 | 60 | 100 |
下列說(shuō)法不正確的是( )
A.這次被調(diào)查的學(xué)生人數(shù)為400人B.對(duì)應(yīng)扇形的圓心角為
C.喜歡選修課的人數(shù)為72人D.喜歡選修課的人數(shù)最少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市居民用水實(shí)行階梯收費(fèi)每戶每月用水量如果未超過(guò)20t,按每噸2.5元收費(fèi).如果超過(guò)20t,未超過(guò)的部分按每噸2.5元收費(fèi),超過(guò)的部分按每噸3.3元收費(fèi).設(shè)某戶每月用水量為xt,應(yīng)收水費(fèi)為y元.
(1)分別寫出每月用水量未超過(guò)20t和超過(guò)20t時(shí)y與x間的關(guān)系式.
(2)若該城市某戶4月份水費(fèi)平均為每噸2.8元,求該戶4月份用水多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長(zhǎng);
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com