如圖,拋物線y=ax2+x+c與x軸交于點(diǎn)A(4,0)、B(-1,0),與y軸交于點(diǎn)C,連接AC,點(diǎn)M是線段OA上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、A重合),過點(diǎn)M作MN∥AC,交OC于點(diǎn)N,將△OMN沿直線MN折疊,點(diǎn)O的對(duì)應(yīng)點(diǎn)O′落在第一象限內(nèi),設(shè)OM=t,△O′MN與梯形AMNC重合部分面積為S.
(1)求拋物線的解析式;
(2)①當(dāng)點(diǎn)O′落在AC上時(shí),請(qǐng)直接寫出此時(shí)t的值;
②求S與t的函數(shù)關(guān)系式;
(3)在點(diǎn)M運(yùn)動(dòng)的過程中,請(qǐng)直接寫出以O(shè)、B、C、O′為頂點(diǎn)的四邊形分別是等腰梯形和平行四邊形時(shí)所對(duì)應(yīng)的t值.
(1)y=-x2+x+2;(2)2,S=t2;(3),.
解析試題分析:(1)應(yīng)用待定系數(shù)法即可求得解析式.
(2)①根據(jù)平行線的性質(zhì)及軸對(duì)稱的性質(zhì)求得∠AO′M=∠O′AM,從而求得OM=AM=,進(jìn)而求得t的值;②根據(jù)平行線分線段成比例定理求得ON=,即可求得三角形的面積S=t2;
(3)根據(jù)直線BC的斜率即可求得直線OO′的解析式y(tǒng)=2x,設(shè)O′(m,2m),根據(jù)O′N=t先求得m與t的關(guān)系式,然后根據(jù)O′C=OB即可求得.
試題解析:(1)∵拋物線y=ax2+x+c與x軸交于點(diǎn)A(4,0)、B(-1,0),
∴,
解得,
∴拋物線的解析式:y=-x2+x+2;
(2)①如圖1,
∵M(jìn)N∥AC,
∴∠OMN=∠O′AM,∠O′MN=AO′M
∵∠OMN=∠O′MN,
∴∠AO′M=∠O′AM,
∴O′M=AM,
∵OM=O′M,
∴OM=AM=t,
∴t=;
②由拋物線的解析式:y=-x2+x+2可知C(0,2)
∵A(4,0)、C(0,2),
∴OA=4,OC=2,
∵M(jìn)N∥AC,
∴ON:OM=OC:OA=2:4=1:2,
∴ON=OM=t,
∴S=.
(3)如圖2,
∵B(-1,0),C(0,2),
∴直線BC的斜率為2,
∵OO′∥BC,
∴直線OO′的解析式為y=2x,
設(shè)O′(m,2m),
∵O′N=ON=t,
∴O′N2=m2+(2m-t)2=()2,
∴t=m,
∴O′C2=m2+(2-2m)2,
∵OB=O′C,
∴m2+(2-2m)2=(-1)2,
解得m1=1,m2=,
∴O′(1,2)或(,),
∵C(0,2),
∴當(dāng)O′(1,2)時(shí),以O(shè)、B、C、O′為頂點(diǎn)的四邊形是平行四邊形,此時(shí)t=,
當(dāng)O′(,)時(shí),以O(shè)、B、C、O′為頂點(diǎn)的四邊形是梯形,此時(shí)t=.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
教練對(duì)小明推鉛球的錄像進(jìn)行技術(shù)分析,發(fā)現(xiàn)鉛球行進(jìn)高度(米)與水平距離(米)之間的關(guān)系為,由此可知鉛球推出的距離是 ___米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
有一個(gè)二次函數(shù)的圖象,三位學(xué)生分別說出了它的一些特點(diǎn).
甲:對(duì)稱軸是直線x=4;
乙:與x軸兩交點(diǎn)的橫坐標(biāo)都是整數(shù);
丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)交點(diǎn)為頂點(diǎn)的三角形面積為3;
請(qǐng)寫出滿足上述全部特點(diǎn)的二次函數(shù)解析式:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,經(jīng)過原點(diǎn)的拋物線y=-x2+bx(b>2)與x軸的另一交點(diǎn)為A,過點(diǎn)P(1,)作直線PN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B.點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C.連結(jié)CB,CP.
(1)當(dāng)b=4時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);
(2)連結(jié)CA,求b的適當(dāng)?shù)闹,使得CA⊥CP;
(3)當(dāng)b=6時(shí),如圖2,將△CBP繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),得到△CB′P′,CP與拋物線對(duì)稱軸的交點(diǎn)為E,點(diǎn)M為線段B′P′(包含端點(diǎn))上任意一點(diǎn),請(qǐng)直接寫出線段EM長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某種上屏每天的銷售利潤(rùn)y(元)與銷售單價(jià)x(元)之間滿足關(guān)系:y=ax2+bx﹣75.其圖象如圖.
(1)銷售單價(jià)為多少元時(shí),該種商品每天的銷售利潤(rùn)最大?最大利潤(rùn)為多少元?
(2)銷售單價(jià)在什么范圍時(shí),該種商品每天的銷售利潤(rùn)不低于16元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=﹣3x﹣3與x軸、y軸分別相交于點(diǎn)A、C,經(jīng)過點(diǎn)C且對(duì)稱軸為x=1的拋物線y=ax2+bx+c與x軸相交于A、B兩點(diǎn).
(1)試求點(diǎn)A、C的坐標(biāo);
(2)求拋物線的解析式;
(3)若點(diǎn)M在線段AB上以每秒1個(gè)單位長(zhǎng)度的速度由點(diǎn)B向點(diǎn)A運(yùn)動(dòng),同時(shí),點(diǎn)N在線段OC上以相同的速度由點(diǎn)O向點(diǎn)C運(yùn)動(dòng)(當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng)),又PN∥x軸,交AC于P,問在運(yùn)動(dòng)過程中,線段PM的長(zhǎng)度是否存在最小值?若有,試求出最小值;若無,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線過點(diǎn)和,是軸正半軸上的動(dòng)點(diǎn),的垂直平分線交于點(diǎn),交軸于點(diǎn).
(1)直接寫出直線的解析式;
(2)當(dāng)時(shí),設(shè),的面積為,求S關(guān)于t的函數(shù)關(guān)系式;并求出S的最大值;
(3)當(dāng)點(diǎn)Q在線段AB上(Q與A、B不重合)時(shí),直線過點(diǎn)A且與x軸平行,問在上是否存在點(diǎn)C,使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求出點(diǎn)C的坐標(biāo),并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2+mx+(m﹣1)與x軸交于點(diǎn)A(x1,0),B(x2,0),x1<x2,與y軸交于點(diǎn)C(0,c),且滿足x12+x22+x1x2=7.
(1)求拋物線的解析式;
(2)在拋物線上能不能找到一點(diǎn)P,使∠POC=∠PCO?若能,請(qǐng)求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對(duì)稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com