有一個二次函數(shù)的圖象,三位學生分別說出了它的一些特點.
甲:對稱軸是直線x=4;
乙:與x軸兩交點的橫坐標都是整數(shù);
丙:與y軸交點的縱坐標也是整數(shù),且以這三個交點為頂點的三角形面積為3;
請寫出滿足上述全部特點的二次函數(shù)解析式:
y=(x﹣3)(x﹣5).
解析試題分析:由對稱軸是直線x=4,與x軸兩交點的橫坐標都是整數(shù),可設(shè)與x軸兩交點坐標為(3,0),(5,0),又因為以函數(shù)與x軸,y軸交點為頂點的三角形面積為3,可得與y軸的交點的坐標為(0,3).利用交點式y(tǒng)=a(x﹣x1)(x﹣x2),求出解析式.
試題解析:此題答案不唯一
∵對稱軸是直線x=4,與x軸兩交點的橫坐標都是整數(shù)
可設(shè)與x軸兩交點坐標為(3,0),(5,0)
又因為以函數(shù)與x軸,y軸交點為頂點的三角形面積為3
可得與y軸的交點的坐標為(0,3)
設(shè)解析式y(tǒng)=a(x﹣3)(x﹣5)
把點(0,3)代入得a=.
∴解析式y(tǒng)=(x﹣3)(x﹣5).
考點: 待定系數(shù)法求二次函數(shù)解析式.
科目:初中數(shù)學 來源: 題型:填空題
小明設(shè)計了一個電子游戲:一電子跳蚤從橫坐標為t(t>0)的P1點開始,按點的橫坐標依次增加1的規(guī)律,在拋物線上向右跳動,得到點P2、P3,這時△P1P2P3的面積為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
二次函數(shù)的圖象如圖,點A0位于坐標原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2,C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知拋物線y=x2﹣4x+3.
(1)求該拋物線的頂點坐標和對稱軸方程;
(2)求該拋物線與x軸的交點坐標;
(3)當x為何值時,y≤0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖①,在平面直角坐標系中,點A是拋物線y=x2在第一象限上的一個點,連結(jié)OA,過點A作AB⊥OA,交y軸于點B,設(shè)點A的橫坐標為n.
【探究】:
(1)當n=1時,點B的縱坐標是 ;
(2)當n=2時,點B的縱坐標是 ;
(3)點B的縱坐標是 (用含n的代數(shù)式表示).
【應用】:
如圖②,將△OAB繞著斜邊OB的中點順時針旋轉(zhuǎn)180°,得到△BCO.
(1)求點C的坐標(用含n的代數(shù)式表示);
(2)當點A在拋物線上運動時,點C也隨之運動.當1≤n≤5時,線段OC掃過的圖形的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線y=ax2+x+c與x軸交于點A(4,0)、B(-1,0),與y軸交于點C,連接AC,點M是線段OA上的一個動點(不與點O、A重合),過點M作MN∥AC,交OC于點N,將△OMN沿直線MN折疊,點O的對應點O′落在第一象限內(nèi),設(shè)OM=t,△O′MN與梯形AMNC重合部分面積為S.
(1)求拋物線的解析式;
(2)①當點O′落在AC上時,請直接寫出此時t的值;
②求S與t的函數(shù)關(guān)系式;
(3)在點M運動的過程中,請直接寫出以O(shè)、B、C、O′為頂點的四邊形分別是等腰梯形和平行四邊形時所對應的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知點P(0,4),點A在線段OP上,點B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需證明);用含t的代數(shù)式表示A點縱坐標:A(0, ;
(2)求點C的坐標,并用含a,t的代數(shù)式表示b;
(3)當t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點O,求a的取值范圍;
(4)當拋物線開口向上,對稱軸是直線,頂點隨著t的增大向上移動時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
在平面直角坐標系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點,且A點在y軸左側(cè),P點的坐標為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當時,BP2=BO•BA;
④△PAB面積的最小值為.
其中正確的是 (寫出所有正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
如圖,拋物線的頂點為P(-2,2)與y軸交于點A(0,3),若平移該拋物線使其頂P沿直線移動到點,點A的對應點為,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com