【題目】如圖是某港口在某天從0時(shí)到12時(shí)的水位情況變化曲線.
(1)在這一問題中,自變量是什么?
(2)大約在什么時(shí)間水位最深,最深是多少?
(3)大約在什么時(shí)間段水位是隨著時(shí)間推移不斷上漲的?
【答案】(1)自變量是時(shí)間;(2)大約在3時(shí)水位最深,最深是8米;(3)在0到3時(shí)和9到12時(shí),水位是隨著時(shí)間推移不斷上漲的.
【解析】
(1)根據(jù)函數(shù)圖象,可以直接寫出自變量;
(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以得到大約在什么時(shí)間水位最深,最深是多少;
(3)根據(jù)函數(shù)圖象,可以寫出大約在什么時(shí)間段水位是隨著時(shí)間推移不斷上漲的.
(1)由圖象可得,
在這一問題中,自變量是時(shí)間;
(2)大約在3時(shí)水位最深,最深是8米;
(3)由圖象可得,
在0到3時(shí)和9到12時(shí),水位是隨著時(shí)間推移不斷上漲的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的四個(gè)頂點(diǎn)分別在菱形ABCD的四條邊上,BE=BF,將△AEH, △CFG分別沿EH,FG折疊,當(dāng)重疊部分為菱形且面積是菱形ABCD面積的時(shí),則為( )
A. B. 2 C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果一個(gè)點(diǎn)的縱坐標(biāo)等于橫坐標(biāo)的2倍,那么這個(gè)點(diǎn)叫做倍點(diǎn).例如:點(diǎn)(1,2)是倍點(diǎn)。
(1)已知第一象限內(nèi)的點(diǎn)A到x軸的距離是1,若點(diǎn)A是倍點(diǎn),則點(diǎn)A的坐標(biāo)為________
(2)求反比例函數(shù)圖像上的所有倍點(diǎn);
(3)請分析一次函數(shù)(為常數(shù))圖像上倍點(diǎn)的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊿ABC中,AB=AC,∠BAC=,點(diǎn)D在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),連接AD,作∠1=∠C,DE交線段AC于點(diǎn)E.
(1)若∠BAD=,求∠EDC的度數(shù);
(2)當(dāng)DC=AC時(shí),求證:⊿ABD≌⊿DCE ;
(3)當(dāng)∠BAD的度數(shù)是多少時(shí),⊿ADE能成為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司為提高快遞分揀的速度,決定購買機(jī)器人來代替人工分揀,兩種型號(hào)的機(jī)器人的工作效率和價(jià)格如表:
型號(hào) | 甲 | 乙 |
每臺(tái)每小時(shí)分揀快遞件數(shù)(件) | 1000 | 800 |
每臺(tái)價(jià)格(萬元) | 5 | 3 |
該公司計(jì)劃購買這兩種型號(hào)的機(jī)器人共10臺(tái),并且使這10臺(tái)機(jī)器人每小時(shí)分揀快遞件數(shù)總和不少于8500件
(1)設(shè)購買甲種型號(hào)的機(jī)器人x臺(tái),購買這10臺(tái)機(jī)器人所花的費(fèi)用為y萬元,求y與x之間的關(guān)系式;
(2)購買幾臺(tái)甲種型號(hào)的機(jī)器人,能使購買這10臺(tái)機(jī)器人所花總費(fèi)用最少?最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在同一條直線上,M,N分別為BE,CD的中點(diǎn).
(1)求證:△ABE≌ACD;
(2)判斷△AMN的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)y=(k>0)的圖象經(jīng)過BC邊的中點(diǎn)D(3,1).
(1)求這個(gè)反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對(duì)稱,且△EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個(gè)函數(shù)的圖象上.求OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AE⊥BC于點(diǎn)E,∠B=22.5°,AB的垂直平分線DN交BC于點(diǎn)D,交AB于點(diǎn)N,DF⊥AC于點(diǎn)F,交AE于點(diǎn)M.求證:
(1)AE=DE;
(2)EM=EC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com