如圖,AB、AC、BD是⊙O的切線,P、C、D為切點,如果AB=5,AC=3,則BD的長為______.
∵AC、AP為⊙O的切線,
∴AC=AP,
∵BP、BD為⊙O的切線,
∴BP=BD,
∴BD=PB=AB-AP=5-3=2.
故答案為:2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,兩個半圓中,長為4的弦,AB與直徑CD平行且與小半圓相切,那么圖中陰影部分的面積等于多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB為⊙O的直徑,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)關(guān)系式,并求當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:在△ABC中,AB=BC=CA=2,D為BC延長線上一點,CD=1,P為AB上一動點(不運動至點A,B),以PC為直徑作⊙O交BC于M,連接PD,交⊙O于H,交AC于E,連接PM.
(1)設(shè)AP=t,S△PCD=S,求S關(guān)于t的函數(shù)解析式和t的取值范圍;
(2)過D作⊙O的切線DT,T為切點,試用含t的代數(shù)式表示DT的長;
(3)當(dāng)點P運動到AB中點時,求證:
S△PCD
S△PCE
=
CD
CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,形如量角器的半圓O的直徑DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圓O以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在直線BC上.設(shè)運動時間為t(s),當(dāng)t=0s時,半圓O在△ABC的左側(cè),OC=8cm.當(dāng)t為何值時,△ABC的一邊所在直線與半圓O所在的圓相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,點C在⊙O上,點P是直徑AB上的一點(不與A重合),過點P作AB的垂線交BC于點Q.
(1)在線段PQ上取一點D,使DQ=DC,連接DC,試判斷CD與⊙O的位置關(guān)系,并說明理由.
(2)若cosB=
3
5
,BP=6,AP=1,求QC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,O是正方形ABCD的對角線BD上一點,⊙O與AB,BC都相切,點E,F(xiàn)分別在邊AD,DC上,現(xiàn)將△DEF沿EF對折,折痕EF與⊙O相切,此時點D恰好落在圓心O處,若DE=2,則正方形ABCD的邊長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O1與⊙O2相交于A、B兩點,PQ切⊙O1于點P,交⊙O2于點Q、M,交AB的延長線于點N.若MN=1,MQ=3,則NP等于( 。
A.1B.
3
C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過點P引圓的兩條割線PAB和PCD,分別交圓于點A,B和C,D,連接AC,BD,則在下列各比例式中,①
PA
PB
=
PC
PD
;②
PA
PD
=
PC
PB
;③
PA
AC
=
PD
BD
,成立的有______(把你認為成立的比例式的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案