【題目】下列運算正確的是

A. (a2)3a5B. a22a33a5C. a6÷a2a3D. a·a2a3

【答案】D

【解析】

根據(jù)同底數(shù)冪的乘法、除法法則、冪的乘方的運算法則,合并同類項法則一一判斷即可.

A、(a32=a6,故錯誤;

Ba22a3不是同類項,不能合并,故錯誤;

C、a6÷a2=a4,故錯誤;

Da·a2a3,正確.

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AE=CF∠AFD=∠CEB,那么添加下列一個條件后,仍無法判定△ADF≌△CBE的是( )

A. ∠A=∠C B. AD=CB C. BE=DF D. AD∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c的頂點D的坐標為(1,﹣),且與x軸交于A,B兩點,與y軸交于C點,A點的坐標為(4,0).P點是拋物線上的一個動點,且橫坐標為m.

(1)求拋物線所對應(yīng)的二次函數(shù)的表達式.

(2)若動點P滿足PAO不大于45°,求P點的橫坐標m的取值范圍.

(3)是否存在P點,使PAC=BCO?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。試說明:

(1)AE∥CF;
(2)AB∥CD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)

(1)求A、B兩種型號的電風(fēng)扇的銷售單價;

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(a,1)與點A′(5,b)關(guān)于坐標原點對稱,則實數(shù)a、b的值是(
A.a=5,b=1
B.a=﹣5,b=1
C.a=5,b=﹣1
D.a=﹣5,b=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市去年有4.7萬名考生參加了中考,為了解這些考生的數(shù)學(xué)成績,從中抽取了4000名考生的數(shù)學(xué)成績進行統(tǒng)計分析,以下說法正確的是(

A. 這4000名考生是總體的一個樣本

B. 這4.7萬名考生的數(shù)學(xué)成績是總體

C. 每位考生是個體

D. 抽取的4000名考生是樣本容量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角三角形ABC,∠BAC=90°,P△ABC內(nèi)一點,PA=1,PB=3,PC=.∠CPA的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,BC=1,CBD=60°,點E是AB邊上一動點(不與點A,B重合),連接DE,過點D作DFDE交BC的延長線于點F,連接EF交CD于點G.

(1)求證:ADE∽△CDF;

(2)求DEF的度數(shù);

(3)設(shè)BE的長為x,BEF的面積為y.

求y關(guān)于x的函數(shù)關(guān)系式,并求出當x為何值時,y有最大值;

當y為最大值時,連接BG,請判斷此時四邊形BGDE的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案