分析 根據(jù)在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AC=$\sqrt{5}$,BC=2,可得AB的長(zhǎng),然后根據(jù)∠ACB=90°,CD⊥AB,可以得到∠ACD、∠BCD與∠A、∠B的關(guān)系,從而可以解答本題.
解答 解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AC=$\sqrt{5}$,BC=2,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}=\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=$\sqrt{9}=3$,∠CDA=CDB∠=90°.
∴∠ACD+∠A=∠A+∠B=90°,∠BCD+∠B=∠B+∠A=90°.
∴∠ACD=∠B,∠BCD=∠A.
∵sinA=$\frac{BC}{AB}=\frac{2}{3}$,sinB=$\frac{AC}{AB}=\frac{\sqrt{5}}{3}$,
∴sin∠ACD=$\frac{\sqrt{5}}{3}$,sin∠BCD=$\frac{2}{3}$.
點(diǎn)評(píng) 本題考查解直角三角形,解題的關(guān)鍵是建立各個(gè)角之間的關(guān)系,根據(jù)相等角的正弦值相等,利用轉(zhuǎn)化的數(shù)學(xué)思想解答本題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com