【題目】校園廣播主持人培訓(xùn)班開展比賽活動,分為 A、B、C、D四個等級,對應(yīng)的成績分別是9分、8分、7分、6分,根據(jù)如圖不完整的統(tǒng)計圖解答下列問題:
(1)補全下面兩個統(tǒng)計圖(不寫過程);
(2)求該班學生比賽的平均成績;
(3)現(xiàn)準備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學生的概率?
【答案】
(1)解:4÷10%=40(人),
C等級的人數(shù)40﹣4﹣16﹣8=12(人),
C等級的人數(shù)所占的百分比12÷40=30%.
兩個統(tǒng)計圖補充如下:
(2)解:9×10%+8×40%+7×30%+6×20%=7.4(分)
(3)解:列表為:
男1 | 男2 | 女1 | 女2 | |
男1 | ﹣﹣ | 男2男1 | 女1男1 | 女2男1 |
男2 | 男1男2 | ﹣﹣ | 女1男2 | 女2男2 |
女1 | 男1女1 | 男2女1 | ﹣﹣ | 女2女1 |
女2 | 男1女2 | 男2女2 | 女1女2 | ﹣﹣ |
由上表可知,從4名學生中任意選取2名學生共有12種等可能結(jié)果,其中恰好選到1名男生和1名女生的結(jié)果有8種,
所以恰好選到1名男生和1名女生的概率P= =
【解析】(1)首先用A等級的學生人數(shù)除以A等級的人數(shù)所占的百分比,求出總?cè)藬?shù);然后用總?cè)藬?shù)減去A、B、D三個等級的人數(shù),求出C等級的人數(shù),補全條形圖;用C等級的人數(shù)除以總?cè)藬?shù),得出C等級的人數(shù)所占的百分比,補全扇形圖;(2)用加權(quán)平均數(shù)的計算公式求解即可;(3)若A等級的4名學生中有2名男生2名女生,現(xiàn)從中任意選取2名參加學校培訓(xùn)班,應(yīng)用列表法的方法,求出恰好選到1名男生和1名女生的概率是多少即可.
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分別繞直線AB和BC旋轉(zhuǎn)一周,所得幾何體的地面圓的周長分別記作l1 , l2 , 側(cè)面積分別記作S1 , S2 , 則( )
A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為一個矩形紙片,AB=3,BC=2,動點P自D點出發(fā)沿DC方向運動至C點后停止,△ADP以直線AP為軸翻折,點D落在點D1的位置,設(shè)DP=x,△AD1P與原紙片重疊部分的面積為y.
(1)當x為何值時,直線AD1過點C?
(2)當x為何值時,直線AD1過BC的中點E?
(3)求出y與x的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y= 的圖象在第一象限的交點為C,CD⊥x軸,垂足為D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出當x>0時,kx+b﹣ <0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為確保廣大居民家庭基本用水需求的同時鼓勵家庭節(jié)約用水,對居民家庭每戶每月用水量采用分檔遞增收費的方式,每戶每月用水量不超過基本用水量的部分享受基本價格,超出基本用水量的部分實行超價收費.為對基本用水量進行決策,隨機抽查2000戶居民家庭每戶每月用水量的數(shù)據(jù),整理繪制出下面的統(tǒng)計表:
用戶每月用水量(m3) | 32及其以下 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43及其以上 |
戶數(shù)(戶) | 200 | 160 | 180 | 220 | 240 | 210 | 190 | 100 | 170 | 120 | 100 | 110 |
(1)為確保70%的居民家庭每戶每月的基本用水量需求,那么每戶每月的基本用水量最低應(yīng)確定為多少立方米?
(2)若將(1)中確定的基本用水量及其以內(nèi)的部分按每立方米1.8元交費,超過基本用水量的部分按每立方米2.5元交費.設(shè)x表示每戶每月用水量(單位:m3),y表示每戶每月應(yīng)交水費(單位:元),求y與x的函數(shù)關(guān)系式;
(3)某戶家庭每月交水費是80.9元,請按以上收費方式計算該家庭當月用水量是多少立方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求證:對角線互相垂直的平行四邊形是菱形.
小紅同學根據(jù)題意畫出了圖形,并寫出了已知和求證的一部分,請你補全已知和求證,并寫出證明過程.
①已知:如圖,在ABCD中,對角線AC,BD交于點O,________.
②求證:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學實驗操作考試,某校對初三學生進行了模擬訓(xùn)練,物理、化學各有4各不同的操作實驗題目,物理用番號①、②、③、④代表,化學用字母a、b、c、d表示,測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.
(1)請用樹形圖法或列表法,表示某個同學抽簽的各種可能情況.
(2)小張同學對物理的①、②和化學的b、c號實驗準備得較好,他同時抽到兩科都準備的較好的實驗題目的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為( )
A.45°
B.50°
C.55°
D.60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com