精英家教網 > 初中數學 > 題目詳情

【題目】為加強愛國主義教育,提高思想道德素質,某中學決定組織部分班級去山西國民師范舊址革命活動紀念館開展紅色旅游活動,在參加此次活動的師生中,若每位教師帶17名學生,還剩12名學生沒人帶;若每位教師帶18名學生,就有一位教師少帶4名學生.現有甲、乙兩種大客車,兩種客車的載客量和租金如下表所示.

類別

甲種客車

乙種客車

載客量(人/輛)

30

42

租金(元/輛)

300

420

1)參加此次紅色旅游活動的教師和學生各有多少人?

2)為了安全,每輛客車上要有2名教師.則怎樣租車可以保證師生均有車坐,而且每輛車上都沒有空座,也不超載,此時租車的費用為多少元?

【答案】(1)教師有16位,學生有284名;(2)應租用甲種客車3輛,乙種客車5輛,此時租車的費用為3000

【解析】

1)設教師有位,學生有名,根據題意列出方程組即可;(2)由(1)知每輛客車上要有2名教師需輛車,設學校應租用甲種客車輛,乙種客車輛,根據學生和老師的總人數列出方程即可,再算出相應的費用.

1)設教師有位,學生有名,

根據題意,得

解,得

答:教師有16位,學生有284名.

2,需要租8輛車.

設學校應租用甲種客車輛,乙種客車輛,

根據題意,得,

解得,

(元).

答:應租用甲種客車3輛,乙種客車5輛,此時租車的費用為3000元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度;
(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:(1)(2)的計算結果精確到0.1米,參考數據: ≈1.41, ≈1.73, ≈2.24, ≈2.45)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,橫、縱坐標都為整數的點稱為整點.如圖,從內向外依次為第,,,個正方形(實線),若整點在第個正方形的邊上,則,,之間滿足的數量關系為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】工人師傅做鋁合金窗框分下面三個步驟進行:

(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖),使AB=CD,EF=GH;

(2)擺放成如圖的四邊形,則這時窗框的形狀是______形,根據的數學原理是:_______________________;

(3)將直角尺靠緊窗框的一個角(如圖),調整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖),說明窗框合格,這時窗框是_______形,根據的數學原理是:_____________________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是( )

A.①②③④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1個等式:1-=×

2個等式:(1-)(1-)=×

3個等式:(1-)(1-)(1-)=×

4個等式:(1-)(1-)(1-)(1-)=×

5個等式:(1-)(1-)(1-)(1-)(1-)=×

······

(1) 寫出第6個等式;

(2) 寫出第n個等式(用含n的等式表示),并予以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,OAOC,OBOD,四位同學分別說了自己的觀點.

甲:∠AOB∠COD.

乙:∠BOC∠AOD180°.

丙:∠AOB∠COD都是∠BOC的余角.

。簣D中小于平角的角有4個.

其中正確的結論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人進行摸牌游戲.現有三張形狀大小完全相同的牌,正面分別標有數字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數字的概率;
(2)若兩人抽取的數字和為2的倍數,則甲獲勝;若抽取的數字和為5的倍數,則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,ABCD是一個正方形,其中幾塊陰影部分的面積如圖所示,則四邊形BMQN的面積為

查看答案和解析>>

同步練習冊答案