【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.
【答案】(1)y=-x2-2x+3;(2)存在,P(-1,)或P(-1,-)或P(-1,6)或P(-1,);(3)當a=-時,S四邊形BOCE最大,且最大值為,此時,點E坐標為(-,).
【解析】
(1)已知拋物線過A、B兩點,可將兩點的坐標代入拋物線的解析式中,用待定系數法即可求出二次函數的解析式;
(2)可根據(1)的函數解析式得出拋物線的對稱軸,也就得出了M點的坐標,由于C是拋物線與y軸的交點,因此C的坐標為(0,3),根據M、C的坐標可求出CM的距離.然后分三種情況進行討論:
①當CP=PM時,P位于CM的垂直平分線上.求P點坐標關鍵是求P的縱坐標,過P作PQ⊥y軸于Q,如果設PM=CP=x,那么直角三角形CPQ中CP=x,OM的長,可根據M的坐標得出,CQ=3-x,因此可根據勾股定理求出x的值,P點的橫坐標與M的橫坐標相同,縱坐標為x,由此可得出P的坐標.
②當CM=MP時,根據CM的長即可求出P的縱坐標,也就得出了P的坐標(要注意分上下兩點).
③當CM=CP時,因為C的坐標為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標是6,由此可得出P的坐標;
(3)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進行計算,過E作EF⊥x軸于F,S四邊形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO為E的橫坐標的絕對值,EF為E的縱坐標,已知C的縱坐標,就知道了OC的長.在△BFE中,BF=BO-OF,因此可用E的橫坐標表示出BF的長.如果根據拋物線設出E的坐標,然后代入上面的線段中,即可得出關于四邊形BOCE的面積與E的橫坐標的函數關系式,根據函數的性質即可求得四邊形BOCE的最大值及對應的E的橫坐標的值.即可求出此時E的坐標.
(1)∵拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(3,0),
∴
解得:.
∴所求拋物線解析式為:y=x22x+3;
(2)∵拋物線解析式為:y=x22x+3,
∴其對稱軸為,
∴設P點坐標為(1,a),當x=0時,y=3,
∴C(0,3),M(1,0)
∴當CP=PM時,(1)2+(3a)2=a2,解得a=,
∴P點坐標為:;
∴當CM=PM時,(1)2+32=a2,解得,
∴P點坐標為:或;
∴當CM=CP時,由勾股定理得:(1)2+32=(1)2+(3a)2,解得a=6,
∴P點坐標為:P4 (1,6).
綜上所述存在符合條件的點P,其坐標為或 或P(1,6)或;
(3)過點E作EF⊥x軸于點F,設E(a,a22a+3)(3<a<0)
∴EF=a22a+3,BF=a+3,OF=a
∴
∴當a=時,S四邊形BOCE最大,且最大值為.
此時,點E坐標為.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為l的正方形ABCD中,E是邊CD的中點,點P是邊AD上一點(與點A、D不重合),射線PE與BC的延長線交于點Q.
(1)求證:;
(2)過點E作交PB于點F,連結AF,當時,①求證:四邊形AFEP是平行四邊形;
②請判斷四邊形AFEP是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知tan∠MON=2,矩形ABCD的邊AB在射線OM上,AD=2,AB=m,CF⊥ON,垂足為點F.
(1)如圖(1),作AE⊥ON,垂足為點E. 當m=2時,求線段EF的長度;
圖(1)
(2)如圖(2),聯結OC,當m=2,且CD平分∠FCO時,求∠COF的正弦值;
圖(2)
(3)如圖(3),當△AFD與△CDF相似時,求m的值.
圖(3)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AB是⊙O的直徑,BC與⊙O交于點D,點E在AC上,且∠ADE=∠B.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為5,CE=2,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E是正方形ABCD申CD邊上任意一點.
(1)以點A為中心,把△ADE順時針旋轉90°,畫出旋轉后的圖形;
(2)在BC邊上畫一點F,使△CFE的周長等于正方形ABCD的周長的一半,請簡要說明你取該點的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一件輪廓為圓形的文物出土后只留下了一塊殘片,文物學家希望能把此件文物進行復原,因此把殘片抽象成了一個弓形,如圖所示,經過測量得到弓形高CD=米,∠CAD=30°,請你幫助文物學家完成下面兩項工作:
(1)作出此文物輪廓圓心O的位置(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)求出弓形所在圓的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:把一個半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.
如圖,拋物線y=x2﹣2x﹣3與x軸交于點A,B,與y軸交于點D,以AB為直徑,在x軸上方作半圓交y軸于點C,半圓的圓心記為M,此時這個半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.
(1)直接寫出點A,B,C的坐標及“蛋圓”弦CD的長;
A ,B ,C ,CD= ;
(2)如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.
①求經過點C的“蛋圓”切線的解析式;
②求經過點D的“蛋圓”切線的解析式;
(3)由(2)求得過點D的“蛋圓”切線與x軸交點記為E,點F是“蛋圓”上一動點,試問是否存在S△CDE=S△CDF,若存在請求出點F的坐標;若不存在,請說明理由;
(4)點P是“蛋圓”外一點,且滿足∠BPC=60°,當BP最大時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某出租汽車公司計劃購買A型和B型兩種節(jié)能汽車,若購買A型汽車4輛,B型汽車7輛,共需310萬元;若購買A型汽車10輛,B型汽車15輛,共需700萬元.
(1)A型和B型汽車每輛的價格分別是多少萬元?
(2)該公司計劃購買A型和B型兩種汽車共10輛,費用不超過285萬元,且A型汽車的數量少于B型汽車的數量,請你給出費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數的圖象交于第一象限,兩點,與坐標軸交于、兩點,連結,.
(1)求與的函數解析式;
(2)將直線向上平移個單位到直線,此時,直線上恰有一點滿足,,求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com