【題目】如圖,在Rt△ABC中,AB=3,BC=4,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AC向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),到達(dá)A點(diǎn)后立刻以原來(lái)的速度沿AB返回.點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)它們的運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)設(shè)△CBQ的面積為S,請(qǐng)用含有t的代數(shù)式來(lái)表示S;
(2)線段PQ的垂直平分線記為直線l,當(dāng)直線l經(jīng)過(guò)點(diǎn)C時(shí),求AQ的長(zhǎng).
【答案】(1)S=12﹣2t;(2)1.5
【解析】
(1)分0<t≤3和3<t≤5兩種情況,表示出BQ的長(zhǎng)度,根據(jù)三角形的面積公式可得;
(2)根據(jù)線段的垂直平分線的性質(zhì)求出AP=AQ,得出3﹣t=t,求出即可.
解:(1)如圖1,當(dāng)0<t≤3時(shí),
BQ=t,BC=4,
∴S=×4×t=2t;
如圖2,當(dāng)3<t≤5時(shí),
,
AQ=t﹣3,
則BQ=3﹣(t﹣3)=6﹣t,
∴S=×4×(6﹣t)=12﹣2t;
(2)如圖3,
∵QP的垂直平分線過(guò)A,
∴AP=AQ,
∴3﹣t=t,解得t=1.5;
或t﹣3=t,顯然不成立;
∴AP=AQ=1.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.
(1)求證:AD=BE;
(2)求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:
(1)已知三邊長(zhǎng)求三角形面積,還需要知道什么?怎么作輔助線?
(2)解:作 ,所得三角形ACD和ABD的邊之間有什么重要關(guān)系?
(3)設(shè)BD=x,分別在兩個(gè)直角三角形中用含x的式子表示AD2,并完成解答,求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1.請(qǐng)同學(xué)們利用網(wǎng)格線進(jìn)行畫(huà)圖:
(1)在圖1中,畫(huà)一個(gè)頂點(diǎn)為格點(diǎn)、面積為5的正方形;
(2)在圖2中,已知線段AB、CD,畫(huà)線段EF,使它與AB、CD組成軸對(duì)稱圖形;(要求畫(huà)出所有符合題意的線段)
(3)在圖3中,找一格點(diǎn)D,滿足:①到CB、CA的距離相等;②到點(diǎn)A、C的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,AB=4,點(diǎn)P是線段AD上的動(dòng)點(diǎn),連接BP,CP,若△BPC周長(zhǎng)的最小值為16,則BC的長(zhǎng)為( 。
A.5B.6C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017浙江省嘉興市,第20題,8分)如圖,一次函數(shù)()與反比例函數(shù)()的圖象交于點(diǎn)A(﹣1,2),B(m,﹣1).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)在x軸上是否存在點(diǎn)P(n,0)(n>0),使△ABP為等腰三角形?若存在,求n的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,網(wǎng)格圖中的每小格均是邊長(zhǎng)是1的正方形,與的頂點(diǎn)均在格點(diǎn)上,請(qǐng)完成下列各題:
(1)在平面直角坐標(biāo)系中畫(huà)出與關(guān)于x軸對(duì)稱的,并寫(xiě)出將沿著x軸向右平移幾個(gè)單位后得到;
(2)在x軸上求作一點(diǎn)P,使得的值最大。(要求:保留畫(huà)圖痕跡并直接寫(xiě)出點(diǎn)P的坐標(biāo).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點(diǎn)P,若PA:PB=1:2,則正方形OABC的面積=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com