【題目】如圖,在矩形ABCD中,E是AD上一點,PQ垂直平分BE,分別交AD、BE、BC于點P、O、Q,連接BPEQ

(1)求證:四邊形BPEQ是菱形;

(2)若AB=6,F(xiàn)為AB的中點,OF+OB=9,求PQ的長.

【答案】1)證明見解析;(2PQ的長是

【解析】試題分析⑴先根據(jù)線段垂直平分線的性質(zhì)證明QB=QE,由ASA證明△BOQ≌△EOP,得出PE=QB,證出四邊形ABGE是平行四邊形,再根據(jù)菱形的判定即可得出結論.

⑵根據(jù)三角形中位線的性質(zhì)可得 , ,則

,在RtABE中,根據(jù)勾股定理可得 ,解得BE=10,

得到 , ,則 , ,計算得出 ,在RtBOP中,根據(jù)勾股定理可得 , 即可求解.

試題解析

1)證明:PQ垂直平分BE,

QB=QE,OB=OE

四邊形ABCD是矩形,

ADBC,

∴ ∠ PEO=∠ QBO

BOQ EOP中,

∴ △ BOQ≌ △ EOPASA),

PE=QB

ADBC,

四邊形BPEQ是平行四邊形,

QB=QE,

四邊形BPEQ是菱形;

2)解:OF分別為PQ,AB的中點,

AE+BE=2OF+2OB=18,

AE=x,則BE=18﹣x

Rt△ ABE中,62+x2=18﹣x2

解得x=8,

BE=18﹣x=10

OB=BE=5,

PE=y,則AP=8﹣y,BP=PE=y,

Rt△ ABP中,62+8﹣y2=y2,解得y=,

Rt△ BOP中,PO==

PQ=2PO=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,(3,3)一定在(  )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙二人從學校出發(fā)去科技館,甲步行一段時間后,乙騎自行車沿相同路線行進,兩人均勻速前行,他們的路程差s(米)與甲出發(fā)時間t(分)之間的函數(shù)關系如圖所示.下列說法:①乙先到達科技館;②乙的速度是甲速度的2.5倍;③b=460;a=25.其中正確的是______(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x、y的方程組

(1)求方程組的解(用含m的代數(shù)式表示);

(2)若方程組的解滿足條件x<0,且y<0,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AC是對角線.點P為矩形外一點且滿足AP=PC,AP⊥PC.PCAD于點N,連接DP,過點PPM⊥PDADM.

(1)若AP=,AB=BC,求矩形ABCD的面積;

(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,BC在同一直線上,在這條直線同側作等邊△ABD和等邊△BCE,連接AECD,交點為MAEBD于點P,CDBE于點Q,連接PQ、BM4個結論:①△ABE≌△DBC,②△DQB≌△ABP,③∠EAC=30°④∠AMC=120°,請將所有正確結論的序號填在橫線上______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組在研究函數(shù)y=x3﹣2x的圖象與性質(zhì)時,已列表、描點并畫出了圖象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

(1)請補全函數(shù)圖象;

(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為   ;

(3)觀察圖象,寫出該函數(shù)的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于E,BECD于點F,∠1+∠2=90°.

(1)試說明:ABCD;

(2)若∠2=25°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下問題,不適合用全面調(diào)查的是(  )

A.了解全班同學每周體育鍛煉的時間B.鞋廠檢查生產(chǎn)的鞋底能承受的彎折次數(shù)

C.學校招聘教師,對應聘人員面試D.某中學調(diào)查全校753名學生的身高

查看答案和解析>>

同步練習冊答案