【題目】如圖,在毎個小正方形的邊長均為1的方格紙中有線段ABCD,點AB、C、D均在小正方形的頂點上.

1)畫出一個以AB為一直角邊的RtABE,點E在小正方形的頂點上,且∠BAE45°;

2)畫出一個以CD為一邊的菱形CDMN,點MN均在小正方形的頂點上,且菱形CDMN的面積是△ABE面積的4倍,連接EN,請直接寫出線段EN的長.

【答案】1)詳見解析;(2)圖詳見解析,5

【解析】

(1)畫出一個以AB為一直角邊的RtABE,點E在小正方形的頂點上,且∠BAE=45°即可;

(2)畫出一個以CD為一邊的菱形CDMN,點MN均在小正方形的頂點上,且菱形CDMN的面積是△ABE面積的4倍即可.根據(jù)勾股定理即可直接寫出線段EN的長.

如圖所示:

(1)RtABE即為所求作的圖形,且∠BAE=45°;

(2)菱形CDMN即為所求作的圖形,

,

,

∴菱形CDMN的面積是△ABE面積的4倍.

連接EN,線段EN的長為5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.

1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?

2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,那么該商店至少要購進(jìn)A種紀(jì)念品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】距離中考體考時間越來越近,年級組想了解初三年級2400名學(xué)生周末在家體育鍛煉的情況,在初三年級隨機(jī)抽查了20名男生和20名女生周末每天在家鍛煉的時間情況.

(一)收集數(shù)據(jù):(單位:分)

男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40

女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90

(二)整理、描述數(shù)據(jù):(表一)

時間x

x≤30

30x≤60

60x≤90

90x≤120

男生

2

8

8

2

女生

1

4

a

3

(表二)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)

極差

平均數(shù)

中位數(shù)

眾數(shù)

男生

100

65.75

b

c

女生

90

75.5

75

75

(三)分析、應(yīng)用數(shù)據(jù):

1)請將上面兩個表格補(bǔ)充完整:a_____,b______c______;

2)請根據(jù)抽樣調(diào)查的數(shù)據(jù)估計初三年級周末每天鍛煉時間在100分鐘以上(含100分鐘)的同學(xué)大約有多少人?

3)李老師看了表格數(shù)據(jù)后認(rèn)為初三年級的女生周末鍛煉堅持得比男生好,請你結(jié)合統(tǒng)計數(shù)據(jù),寫出支持老師觀點的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知在直角坐標(biāo)系中,一條拋物線與x軸交于AB兩點,與y軸交于C點,其中B3,0),C0,4),點Ax軸的負(fù)半軸上,OC4OA

1)求點A坐標(biāo);

2)求這條拋物線的解析式,并求出它的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸負(fù)半軸于點A,交x軸正半軸于點B40),交y軸正半軸于點COC4OA,SABC24

1)求拋物線的解析式;

2)點P為第一象限拋物線上一點,過點PPDAB于點D,連接APy軸于點E,過點EEGPD于點G,設(shè)點P的橫坐標(biāo)為tt1),PG的長度為d,求dt之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

3)在(2)的條件下,過點BBFEGEG的延長線于點F,點Q在線段GF上,連接DQPQ,將△DGQ沿DQ折疊后,點G的對稱點為點H,DHBF于點M,連接MQ并延長交DP的延長線于點N,當(dāng)∠DQM45°,tanPQN時,求直線PQ的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, ,點內(nèi)部一點,作射線,點在射線上,且,點與點關(guān)于射線對稱,且直線與射線交于點.當(dāng)為等腰三角形時,的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知拋物線經(jīng)過點三點,點與點關(guān)于軸對稱,點是線段上的一個動點,設(shè)點的坐標(biāo)為過點軸的垂線交拋物線于點,交直線于點

1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

2)在點運(yùn)動過程中,是否存在點,使得是直角三角形?若存在,求出點的坐標(biāo);若不存在,請說明理由;

3)連接,將繞平面內(nèi)某點順時針旋轉(zhuǎn),得到,點的對應(yīng)點分別是點.若的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為"和諧點",請直接寫出"和諧點"的個數(shù)和點的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于反比例函數(shù),下列說法錯誤的是( 。

A. 函數(shù)圖象位于第一、三象限

B. 函數(shù)值yx的增大而減小

C. A-1,y1)、B1,y2)、C2y3)是圖象上三個點,則y1y3y2

D. P為圖象上任意一點,過PPQy軸于Q,則OPQ的面積是定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家買了一臺充電式自動掃地機(jī),每次完成充電后,在使用時掃地機(jī)會自動根據(jù)設(shè)定掃地時間,來確定掃地的速度(以使每次掃地結(jié)束時盡量把所儲存的電量用完),如圖是設(shè)定掃地時間掃地速度之間的函數(shù)圖象(線段AB),其中設(shè)定掃地時間為x分鐘,掃地速度為y平方分米/分鐘.

(1)y關(guān)于x的函數(shù)解析式;

(2)現(xiàn)在小明需要掃地機(jī)完成180平方米的掃地任務(wù),他應(yīng)該設(shè)定的掃地時間為多少分鐘?

查看答案和解析>>

同步練習(xí)冊答案