【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、C、D三點(diǎn)在同一條直線上,連接線段BE、AD交于點(diǎn)F,連接CF,
(1)求證:∠FBC=∠FAC.
(2)求∠BFC的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)∠BFC=60°.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)可得∠ECD=∠ABC=60°,AC=BC,CD=CE,利用角的和差關(guān)系可得∠ACD=∠BCE,利用SAS可證明△ACD≌△BCE,根據(jù)全等三角形的性質(zhì)即可得答案;(2)作CG⊥BE于G,CH⊥AD于H,由∠ACB=∠EDC=60°可得AC//ED,根據(jù)平行線的性質(zhì)可得∠CAD=∠ADE,利用等量代換可得∠EBD=∠ADE,根據(jù)三角形外角性質(zhì)可得∠EFD=∠EBD+∠BDF=∠ADE+∠BDF=∠BDE=60°,根據(jù)平角的定義可得∠BFD=120°,由(1)得△ACD≌△BCE,根據(jù)全等三角形對(duì)應(yīng)邊上的高對(duì)應(yīng)相等可得CG=CH,根據(jù)角平分線的性質(zhì)可得CF是∠BFD的角平分線,即可求出∠BFC的度數(shù).
(1)∵△ABC和△CDE均為等邊三角形,
∴AC=BC,∠ACB=∠ECD=60°,CD=CE,
∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE,
∴∠EBC=∠DAC,即∠FBC=∠FAC.
(2)∵∠ACB=∠EDC=60°,
∴AC//DE,
∴∠CAD=∠ADE,
∵∠CAD=∠EBD,
∴∠EBD=∠ADE,
∴∠EFD=∠EBD+∠BDF=∠ADE+∠BDF=∠EDB=60°,
∴∠BFD=180°-∠EFD=120°,
∵△ACD≌△BCE,CG、CH分別是對(duì)應(yīng)邊BE、AD的高,
∴CG=CH,
∴CF是∠BFD的角平分線,
∴∠BFC=∠BFD=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖是萊州經(jīng)濟(jì)產(chǎn)業(yè)的亮麗名片之一,某養(yǎng)殖場(chǎng)響應(yīng)山東省加快新舊動(dòng)能轉(zhuǎn)換的號(hào)召,今年采用新技術(shù)投資養(yǎng)殖了200萬(wàn)籠扇貝,并且全部被訂購(gòu),已知每籠扇貝的成本是40元,售價(jià)是100元,打撈出售過(guò)程中發(fā)現(xiàn),一部分扇貝生長(zhǎng)情況不合要求,最后只能按照25元一籠出售,如果純收入為萬(wàn)元,不合要求的扇貝有萬(wàn)籠.
(1)求純收入關(guān)于的關(guān)系式.
(2)當(dāng)為何值時(shí),養(yǎng)殖場(chǎng)不賠不嫌?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:正方形ABCD,點(diǎn)E在CB的延長(zhǎng)線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE交AE于點(diǎn)G.
(1)求證:GF=BF;
(2)若EB=1,BC=4,求AG的長(zhǎng);
(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AM交DE于點(diǎn)O.求證:FOED=ODEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,D、E分別是BC、AC上的動(dòng)點(diǎn)且BD=CE,連接AD與BE相交于點(diǎn)F,連接CF,下列結(jié)論:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,則FA=FB=FC;④∠AFC=90°,則AF=3BF,其中正確的結(jié)論共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小慧家與文具店相距720米,小慧從家出發(fā),勻速步行12分鐘來(lái)到文具店,買(mǎi)文具用時(shí)4分鐘,因家中有事,沿原路勻速跑步返回家中,用時(shí)6分鐘.
(1)小慧返回家中的速度比去文具店的速度快 米/分鐘;
(2)請(qǐng)你畫(huà)出這個(gè)過(guò)程中,小慧離家的距離與時(shí)間的函數(shù)圖象;
(3)求小慧從家出發(fā)后經(jīng)過(guò)多少分鐘與她家距離為480米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,且面積是24,的垂直平分線分別交邊于點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為( )
A.9B.10C.11D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點(diǎn)D在BC所在的直線上,點(diǎn)E在射線AC上,且AD=AE,連接DE.
⑴如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
⑵如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
⑶當(dāng)點(diǎn)D在直線BC上(不與點(diǎn)B、C重合)運(yùn)動(dòng)時(shí),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目校,為進(jìn)一步推動(dòng)該項(xiàng)目的發(fā)展.學(xué)校準(zhǔn)備到體育用品店購(gòu)買(mǎi)甲、乙兩種型號(hào)乒乓球若干個(gè),已知3個(gè)甲種乒乓球和5個(gè)乙種乒乓球共需50元,2個(gè)甲種乒乓球和3個(gè)乙種乒乓球共需31元.
(1)求1個(gè)甲種乒乓球和1個(gè)乙種乒乓球的售價(jià)各是多少元?
(2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)這兩種型號(hào)的乒乓球共200個(gè),要求甲種乒乓球的數(shù)量不超過(guò)乙種乒乓球的數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com