【題目】已知,如圖△ABC和△CDE均為等邊三角形,B、CD三點(diǎn)在同一條直線上,連接線段BE、AD交于點(diǎn)F,連接CF,

1)求證:∠FBC=FAC.

2)求∠BFC的度數(shù).

【答案】1)證明見(jiàn)解析;(2)∠BFC=60°.

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得∠ECD=ABC=60°,AC=BC,CD=CE,利用角的和差關(guān)系可得∠ACD=BCE,利用SAS可證明△ACD≌△BCE,根據(jù)全等三角形的性質(zhì)即可得答案;(2)作CGBEG,CHADH,由∠ACB=EDC=60°可得AC//ED,根據(jù)平行線的性質(zhì)可得∠CAD=ADE,利用等量代換可得∠EBD=ADE,根據(jù)三角形外角性質(zhì)可得∠EFD=EBD+BDF=ADE+BDF=BDE=60°,根據(jù)平角的定義可得∠BFD=120°,由(1)得△ACD≌△BCE,根據(jù)全等三角形對(duì)應(yīng)邊上的高對(duì)應(yīng)相等可得CG=CH,根據(jù)角平分線的性質(zhì)可得CF是∠BFD的角平分線,即可求出∠BFC的度數(shù).

1)∵△ABC和△CDE均為等邊三角形,

AC=BC,∠ACB=ECD=60°,CD=CE,

∴∠ACB+ACE=ECD+ACE,即∠ACD=BCE,

在△ACD和△BCE中,,

∴△ACD≌△BCE

∴∠EBC=DAC,即∠FBC=FAC.

2)∵∠ACB=EDC=60°,

AC//DE,

∴∠CAD=ADE,

∵∠CAD=EBD,

∴∠EBD=ADE,

∴∠EFD=EBD+BDF=ADE+BDF=EDB=60°,

∴∠BFD=180°-EFD=120°,

∵△ACD≌△BCE,CG、CH分別是對(duì)應(yīng)邊BEAD的高,

CG=CH,

CF是∠BFD的角平分線,

∴∠BFC=BFD=60°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海水養(yǎng)殖是萊州經(jīng)濟(jì)產(chǎn)業(yè)的亮麗名片之一,某養(yǎng)殖場(chǎng)響應(yīng)山東省加快新舊動(dòng)能轉(zhuǎn)換的號(hào)召,今年采用新技術(shù)投資養(yǎng)殖了200萬(wàn)籠扇貝,并且全部被訂購(gòu),已知每籠扇貝的成本是40元,售價(jià)是100元,打撈出售過(guò)程中發(fā)現(xiàn),一部分扇貝生長(zhǎng)情況不合要求,最后只能按照25元一籠出售,如果純收入為萬(wàn)元,不合要求的扇貝有萬(wàn)籠.

1)求純收入關(guān)于的關(guān)系式.

2)當(dāng)為何值時(shí),養(yǎng)殖場(chǎng)不賠不嫌?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:正方形ABCD,點(diǎn)ECB的延長(zhǎng)線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)GBEAE于點(diǎn)G.

(1)求證:GF=BF;

(2)若EB=1,BC=4,求AG的長(zhǎng);

(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AMDE于點(diǎn)O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是BC、AC上的動(dòng)點(diǎn)且BD=CE,連接ADBE相交于點(diǎn)F,連接CF,下列結(jié)論:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,則FA=FB=FC;④∠AFC=90°,則AF=3BF,其中正確的結(jié)論共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小慧家與文具店相距720米,小慧從家出發(fā),勻速步行12分鐘來(lái)到文具店,買(mǎi)文具用時(shí)4分鐘,因家中有事,沿原路勻速跑步返回家中,用時(shí)6分鐘.

1)小慧返回家中的速度比去文具店的速度快 /分鐘;

2)請(qǐng)你畫(huà)出這個(gè)過(guò)程中,小慧離家的距離與時(shí)間的函數(shù)圖象;

3)求小慧從家出發(fā)后經(jīng)過(guò)多少分鐘與她家距離為480.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,且面積是24,的垂直平分線分別交邊于點(diǎn),若點(diǎn)邊的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為(

A.9B.10C.11D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC=∠ACB,點(diǎn)DBC所在的直線上,點(diǎn)E在射線AC上,且AD=AE,連接DE

如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);

如圖②,若∠ABC=∠ACB=75°∠CDE=18°,求∠BAD的度數(shù);

當(dāng)點(diǎn)D在直線BC上(不與點(diǎn)B、C重合)運(yùn)動(dòng)時(shí),試探究∠BAD與∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目校,為進(jìn)一步推動(dòng)該項(xiàng)目的發(fā)展.學(xué)校準(zhǔn)備到體育用品店購(gòu)買(mǎi)甲、乙兩種型號(hào)乒乓球若干個(gè),已知3個(gè)甲種乒乓球和5個(gè)乙種乒乓球共需50元,2個(gè)甲種乒乓球和3個(gè)乙種乒乓球共需31.

1)求1個(gè)甲種乒乓球和1個(gè)乙種乒乓球的售價(jià)各是多少元?

2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)這兩種型號(hào)的乒乓球共200個(gè),要求甲種乒乓球的數(shù)量不超過(guò)乙種乒乓球的數(shù)量的3倍,請(qǐng)?jiān)O(shè)計(jì)出最省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案