【題目】關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0

)當(dāng)m=時(shí),求方程的實(shí)數(shù)根;

(Ⅱ)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;

【答案】)x1=,x2=

)mm

【解析】試題分析:(Ⅰ)把m的值代入,再解方程即可;
(Ⅱ)由方程有兩個(gè)不相等的實(shí)數(shù)根,根據(jù)根的判別式可得到關(guān)于m的不等式,則可求得m的取值范圍.

試題解析:

Ⅰ)當(dāng)m=時(shí),方程為x2+x﹣1=0,

∴△=12﹣4×(﹣1)=5,

x=,

x1=,x2=;

∵關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,

∴△>02m+10,即(4m)2﹣4(2m+1)(2m﹣3)0m

mm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點(diǎn),BEAP,DFAP,垂足分別是點(diǎn)E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結(jié)BF,如課=.求證:EF=EP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)寬分別是的全等小矩形,且

(1)用含的代數(shù)式表示切痕的總長(zhǎng)為 ;

(2)若每塊小矩形的面積為,四個(gè)正方形的面積和為,試求該矩形大鐵皮的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動(dòng),2秒后,兩點(diǎn)相距20個(gè)單位長(zhǎng)度.已知點(diǎn)的運(yùn)動(dòng)速度之比為

1)求兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)速度;

2)在數(shù)軸上標(biāo)出,兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)2秒時(shí)的位置;

3)若,兩點(diǎn)分別從(2)中標(biāo)出的位置同時(shí)向數(shù)軸負(fù)方向運(yùn)動(dòng),則再經(jīng)過多長(zhǎng)時(shí)間,兩點(diǎn)相距8個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球訓(xùn)練中,為了訓(xùn)練球員快速搶斷轉(zhuǎn)身,教練在東西方向的足球場(chǎng)上畫了一條直線,要求球員在這條直線上進(jìn)行折返跑訓(xùn)練,如果約定向西為正,向東為負(fù),將某球員的一組折返距練習(xí)記錄如下(單位:米) ,

球員最后到達(dá)的地方在出發(fā)點(diǎn)的哪個(gè)方向?距出發(fā)點(diǎn)多遠(yuǎn)?

球員訓(xùn)練過程中,最遠(yuǎn)處離出發(fā)點(diǎn) 米?

球員在這一組練習(xí)過程中,共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A1,1),B4,2),C34).

①請(qǐng)畫出ABC關(guān)于y軸對(duì)稱的A1B1C1;

②請(qǐng)畫出ABC關(guān)于x軸對(duì)稱的A2B2C2,并寫出A2B2C2各頂點(diǎn)坐標(biāo);

③求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果,那么稱bn的布谷數(shù),記為.

例如:因?yàn)?/span>,所以,

因?yàn)?/span>

所以.

1)根據(jù)布谷數(shù)的定義填空:g2=________________,g32=___________________.

2)布谷數(shù)有如下運(yùn)算性質(zhì):

m,n為正整數(shù),則,.

根據(jù)運(yùn)算性質(zhì)解答下列各題:

①已知,求的值;

②已知.的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點(diǎn)F在CA的延長(zhǎng)線上,F(xiàn)H⊥BE交BD于點(diǎn)G,交BC于點(diǎn)H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對(duì)稱軸為直線,且拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),其中.

(1)若直線經(jīng)過、兩點(diǎn),求直線和拋物線的解析式;

(2)在拋物線的對(duì)稱軸上找一點(diǎn),使點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離之和最小,求出點(diǎn)的坐標(biāo);

(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求使為直角三角形的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案