10.某班“2016年聯(lián)歡會(huì)”中,有一個(gè)摸獎(jiǎng)游戲:有4張紙牌,背面都是喜羊羊頭像,正面有2張是笑臉,2張是哭臉,現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學(xué)去翻紙牌.
(1)現(xiàn)在小芳和小霞分別有一次翻牌機(jī)會(huì),若正面是笑臉,則小芳獲獎(jiǎng);若正面是哭臉,則小霞獲獎(jiǎng),她們獲獎(jiǎng)的機(jī)會(huì)相同嗎?判斷并說明理由.
(2)如果小芳、小明都有翻兩張牌的機(jī)會(huì).翻牌規(guī)則:小芳先翻一張,放回后再翻一張;小明同時(shí)翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)笑臉就獲獎(jiǎng).請(qǐng)問他們獲獎(jiǎng)的機(jī)會(huì)相等嗎?判斷并說明理由.

分析 (1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結(jié)果與獲獎(jiǎng)的情況,再利用概率公式求解即可求得他們獲獎(jiǎng)的概率,比較即可求得答案.

解答 解:(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎(jiǎng),正面是哭臉的不獲獎(jiǎng),
∴獲獎(jiǎng)的概率是$\frac{1}{2}$;

(2)他們獲獎(jiǎng)機(jī)會(huì)不相等,理由如下:
小芳:


第一張
第二張
笑1笑2哭1哭2
笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1
笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2
哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1
哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2
∵共有16種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有12種情況,
∴P(小芳獲獎(jiǎng))=$\frac{12}{16}$=$\frac{3}{4}$;
小明:
第一張
第二張
笑1笑2哭1哭2
笑1笑2,笑1哭1,笑1哭2,笑1
笑2笑1,笑2哭1,笑2哭2,笑2
哭1笑1,哭1笑2,哭1哭2,哭1
哭2笑1,哭2笑2,哭2哭1,哭2
∵共有12種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有10種情況,
∴P(小明獲獎(jiǎng))=$\frac{10}{12}$=$\frac{5}{6}$,
∵P(小芳獲獎(jiǎng))≠P(小明獲獎(jiǎng)),
∴他們獲獎(jiǎng)的機(jī)會(huì)不相等.

點(diǎn)評(píng) 此題考查了列表法或樹狀圖法求概率.注意小芳屬于放回實(shí)驗(yàn),小明屬于不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直角坐標(biāo)系中,函數(shù)y=$\frac{3}{4}$x與函數(shù)y=-x+7的圖象交于點(diǎn)A.
(1)求OA的長(zhǎng);
(2)設(shè)x軸上一點(diǎn)P(a,0)(點(diǎn)P在點(diǎn)A的右側(cè))過點(diǎn)P作x軸的垂線分別交y=$\frac{3}{4}$x與y=-x+7的圖象于點(diǎn)B、C,若四邊形DOCB是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式$\frac{x+5}{2}$-1>$\frac{ax+2}{2}$的解是x>-$\frac{1}{2}$的一部分,試求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,拋物線y=ax2+bx+c關(guān)于原點(diǎn)對(duì)稱的拋物線是(  )
A.y=-ax2-bx+cB.y=ax2-bx-cC.y=-ax2+bx-cD.y=-ax2-bx-c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.在Rt△ABC中,∠ABC=90°,∠C=30°,AB=4cm,若點(diǎn)E為Rt△ABC斜邊AC上一動(dòng)點(diǎn),過點(diǎn)E作EF⊥AC,交直線AB于點(diǎn)F,將△AEF沿EF折疊,其中點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,若使△A′BC為等腰三角形,則AE的長(zhǎng)為2cm或(4-2$\sqrt{3}$)cm或(4+2$\sqrt{3}$)cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.若分式$\frac{{x}^{2}-1}{{x}^{2}+x-2}$=0,則x=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.解不等式$\frac{x+1}{2}$-1≤$\frac{2x-1}{3}$,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.求使不等式|$\frac{3n}{n+1}$-3|$<\frac{1}{100}$成立的最小正整數(shù)n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.不為0的兩個(gè)數(shù)的差若是正數(shù),那么( 。
A.被減數(shù)為正數(shù),減數(shù)為負(fù)數(shù)
B.被減數(shù)與減數(shù)都是正數(shù),且被減數(shù)大于減數(shù)
C.被減數(shù)與減數(shù)都是負(fù)數(shù),且減數(shù)的絕對(duì)值較大
D.以上A、B、C必有一種成立

查看答案和解析>>

同步練習(xí)冊(cè)答案