【題目】平行四邊形不一定具有的性質(zhì)是(

A.對(duì)角線互相垂直B.對(duì)邊平行且相等C.對(duì)角線互相平分D.對(duì)角相等

【答案】A

【解析】

結(jié)合平行四邊形的性質(zhì)即可判定。

結(jié)合平行四邊形的性質(zhì)可知選項(xiàng)B、C、D均正確,但平行四邊形的對(duì)角線不垂直,則A不正確.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=x2-2x-3,當(dāng)m-2≤x≤m時(shí)函數(shù)有最大值5,則m的值可能為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2x(x﹣1)=12+x(2x﹣5)的解是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)多邊形的每個(gè)內(nèi)角都相等,且內(nèi)角和為1800度,那么這個(gè)多邊形的一個(gè)外角是(
A.30°
B.36°
C.60°
D.72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算正確的是( )

A. (ab)2=ab2 B. 3a+2a2=5a3 C. (a+b)2=a2+b2 D. -(2a2)2·a=-4a5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各數(shù)中(-32;-32;-3;--3;(-12nn為正整數(shù));0,非負(fù)數(shù)有(個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC和DEF均是邊長(zhǎng)為4的等邊三角形,DEF的頂點(diǎn)D為ABC的一邊BC的中點(diǎn),DEF繞點(diǎn)D旋轉(zhuǎn),且邊DF、DE始終分別交ABC的邊AB、AC于點(diǎn)H、G.圖中直線BC兩側(cè)的圖形關(guān)于直線BC成軸對(duì)稱.連結(jié)HH、HG、GG、HG,其中HH、GG分別交BC于點(diǎn)I、J.

(1)求證:DHB∽△GDC;

(2)設(shè)CG=x,四邊形HHGG的面積為y,

求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍;

求當(dāng)x為何值時(shí),y的值最大,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12分)閱讀:我們知道, 于是要解不等式,我們可以分兩種情況去掉絕對(duì)值符號(hào),轉(zhuǎn)化為我們熟悉的不等式,按上述思路,我們有以下解法:

解:(1)當(dāng),即時(shí):

解這個(gè)不等式,得:

由條件,有:

(2)當(dāng)< 0,即 x < 3時(shí),

解這個(gè)不等式,得:

由條件x < 3,有: < 3

∴ 如圖, 綜合(1)、(2)原不等式的解為:

根據(jù)以上思想,請(qǐng)?zhí)骄客瓿上铝?個(gè)小題:

(1); (2)。

查看答案和解析>>

同步練習(xí)冊(cè)答案