【題目】已知四邊形ABCD中,AB=AD,AB⊥AD,連接AC,過點A作AE⊥AC,且使AE=AC,連接BE,過A作AH⊥CD于H交BE于F.
(1)如圖1,當E在CD的延長線上時,求證:①△ABC≌△ADE;②BF=EF;
(2)如圖2,當E不在CD的延長線上時,BF=EF還成立嗎?請證明你的結論.
【答案】
(1)
證明:(1)①如圖1,
∵AB⊥AD,AE⊥AC,
∴∠BAD=90°,∠CAE=90°,
∴∠1=∠2,
在△ABC和△ADE中,
∵
∴△ABC≌△ADE(SAS);
②如圖1 ,
∵△ABC≌△ADE,
∴∠AEC=∠3,
在Rt△ACE中,∠ACE+∠AEC=90°,
∴∠BCE=90°,
∵AH⊥CD,AE=AC,
∴CH=HE,
∵∠AHE=∠BCE=90°,
∴BC∥FH,
∴ =1,
∴BF=EF;
(2)
解:結論仍然成立,理由是:
如圖2所示,
過E作MN⊥AH,交BA、CD延長線于M、N,
∵∠CAE=90°,∠BAD=90°,
∴∠1+∠2=90°,∠1+∠CAD=90°,
∴∠2=∠CAD,
∵MN∥AH,
∴∠3=∠HAE,
∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,
∴∠ACH=∠HAE,
∴∠3=∠ACH,
在△MAE和△DAC中,
∵
∴△MAE≌△DAC(ASA),
∴AM=AD,
∵AB=AD,
∴AB=AM,
∵AF∥ME,
∴ =1,
∴BF=EF.
【解析】(1)①利用SAS證全等;
②易證得:BC∥FH和CH=HE,根據(jù)平行線分線段成比例定理得BF=EF,也可由三角形中位線定理的推論得出結論.
(2)作輔助線構建平行線和全等三角形,首先證明△MAE≌△DAC,得AD=AM,根據(jù)等量代換得AB=AM,根據(jù)②同理得出結論.本題考查了全等三角形的性質(zhì)和判定,平行線分線段成比例的性質(zhì),本題的關鍵是能正確找出全等三角形;在幾何圖形中證明線段相等或已知線段相等的一般思路是:①證明相等線段所在的三角形全等;②利用相等線段的比值為1證相等.
科目:初中數(shù)學 來源: 題型:
【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該商場購進甲、乙兩種商品各多少件?
(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點A(0,3)且與兩坐標軸所圍成的三角形的面積為3,則這個一次函數(shù)的表達式為( )
A. y=1.5x+3 B. y=-1.5x+3 C. y=1.5x+3或y=-1.5x+3 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點A表示數(shù)-20,點C表示數(shù)30,我們把數(shù)軸上兩點之間的距離用表示兩點的大寫字母一起標記。
比如,點A與點B之間的距離記作AB,點B與點C之間的距離記作BC......
(1)點A與點C之間的距離記作AC,求AC的長;
若數(shù)軸上有一點D滿足CD=AD,求D點表示的數(shù);
(2)動點B從數(shù)1對應的點開始向右運動,速度為每秒1個單位長度,同時點A、C在數(shù)軸上運動,點A、C的速度分別為每秒2個單位長度,每秒3個單位長度,運動時間為秒.
①若點A向右運動,點C向左運動,AB=BC,求的值.
②若點A向左運動,點C向右運動,的值不隨時間的變化而改變,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結果保留整數(shù))?(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號內(nèi).
15;0.81;-,﹣3;﹣3.1;17;0;3.14
正數(shù)集合{_______________________};
負數(shù)集合{_______};
整數(shù)集合{_________};
分數(shù)集合{_______________________};
有理數(shù)集合{_____________________}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證:AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:(直接寫出結果)
(1)(﹣6)+(﹣14)=
(2)﹣8﹣(﹣8)=
(3)12+(﹣15)=
(4)+(+16)﹣(+4)=
(5)0﹣(﹣7)=
(6)﹣4×(﹣5)=
(7)0×(﹣15)=
(8)﹣15÷(﹣)=
(9)(﹣3)3=
(10)﹣52=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃購進甲、乙兩種學具,已知一件甲種學具的進價與一件乙種學具的進價的和為40元,用90元購進甲種學具的件數(shù)與用150元購進乙種學具的件數(shù)相同.
求每件甲種、乙種學具的進價分別是多少元?
該學校計劃購進甲、乙兩種學縣共100件,此次進貨的總資金不超過2000元,求最少購進甲種玩具多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com