【題目】如圖,已知A(﹣3,3),B(﹣1,1.5),將線段AB向右平移d個單位長度后,點(diǎn)A、B恰好同時落在反比例函數(shù)y= (x>0)的圖象上,則d等于( )

A.3
B.4
C.5
D.6

【答案】C
【解析】解:∵A(﹣3,3),B(﹣1,1.5),將線段AB向右平移d個單位長度,

∴A′(﹣3+d,3),B′(﹣1+d,1.5).

∵點(diǎn)A′、B′恰好同時落在反比例函數(shù)y= (x>0)的圖象上,

∴3(﹣3+d)=6,解得d=5.

故選C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解反比例函數(shù)的圖象的相關(guān)知識,掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x、y的代數(shù)式(2x2+axy+6)﹣(2bx23x+5y1)的值與字母x所取的值無關(guān),試求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=BOC=COD,下列結(jié)論中錯誤的是(  )

A. OB、OC分別平分

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖一,現(xiàn)有足夠多的邊長為的小正方形紙片(類)、長為寬為的長方形紙片(類)以及邊長為的大正方形紙片(類).

    

如圖二,小明利用上述三種紙片各若干張,拼出了一個長為,寬為的長方形,并用這個長方形解釋了等式是成立的.

(1)若取圖一中的紙片若干張(三種都要取到)拼成一個長方形(所取紙片用完無剩余),使它的長和寬分別為,請你通過計(jì)算說明需要類卡片多少張;

2)若取類紙片張,類紙片張,類紙片張,能拼成一個長方形嗎(所取紙片用完無剩余)?請你在圖三中畫出示意圖并在下面直接寫出能用該長方形來解釋成立的等式;

   

3)如圖四,大正方形的邊長為,小正方形的邊長為,用四個完全相同的長方形的長和寬為別為.請你通過觀察或計(jì)算,判斷下列個式子是否成立,將其中成立的式子的都填寫在橫線上: (直接填寫序號).

;

;

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)EAB上,點(diǎn)DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于點(diǎn)F,試判斷△AFC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(diǎn)(且點(diǎn)P不與點(diǎn)B、C重合),PEABEPFACF,MEF中點(diǎn).設(shè)AM的長為x,則x的取值范圍是(  )

A. 4≥x2.4 B. 4≥x≥2.4 C. 4x2.4 D. 4x≥2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一點(diǎn),過點(diǎn)P作EF∥AC,與菱形的兩條邊分別交于點(diǎn)E、F.設(shè)BP=x,EF=y,則下列圖象能大致反映y與x的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分線交于點(diǎn)E,過點(diǎn)E作MN∥BC分別交AB,AC于M、N,則△AMN的周長為( )

A.12
B.4
C.8
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價(jià)為44萬元,售出的1臺A型、4臺B型污水處理器的總價(jià)為42萬元.

(1)求每臺A型、B型污水處理器的價(jià)格;

(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

同步練習(xí)冊答案