【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點(diǎn)E,PN交CD于點(diǎn)F.
(1)當(dāng)△PMN所放位置如圖①所示時(shí),求出∠PFD與∠AEM的數(shù)量關(guān)系;
(2)當(dāng)△PMN所放位置如圖②所示時(shí),求證:∠PFD-∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點(diǎn)O,且∠DON=15°,∠PEB=30°,求∠N的度數(shù).
【答案】(1)∠PFD+∠AEM=90°;(2)見(jiàn)解析;(3)∠N=45°.
【解析】
(1)如圖,由平行線的性質(zhì)得出∠PFD=∠NPH,∠AEM=∠HPM,即可得出結(jié)果;
(2)設(shè)PN交AB于點(diǎn)G,由平行線的性質(zhì)得出∠PFD=∠PGB,再由三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和即可得出結(jié)果;
(3)由三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠PFD=90°+∠PEB=120°,再由平行線的性質(zhì)得出∠NFO=120°,然后由三角形的內(nèi)角和定理即可得出結(jié)果.
解:(1)如圖,過(guò)點(diǎn)P作PH∥AB.
∵AB∥CD,
∴PH∥CD,
∴∠PFD=∠NPH,∠AEM=∠HPM.
∵∠MPN=90°,
∴∠NPH+∠HPM=90°,
∴∠PFD+∠AEM=90°.
(2)證明:設(shè)PN交AB于點(diǎn)G.
∵AB∥CD,
∴∠PFD=∠PGB.
∵∠PGB-∠PEB=90°,∠PEB=∠AEM,
∴∠PFD-∠AEM=90°.
(3)由(2)得,∠PFD=90°+∠PEB=120°,
∴∠NFO=120°,
∴∠N=180°-∠DON-∠NFO=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE與DE相交于點(diǎn)E,求證∠E=90° 證明:∵AB∥CD()
∴∠ABD+∠BDC=180°()
∵BE平分∠ABD()
∴∠EBD= ()
又∵DE平分∠BDC
∴∠BDE= ()
∴∠EBD+∠EDB= ∠ABD+ ∠BDC()
= (∠ABD+∠BDC)=90°
∴∠E=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m﹣5)x+m﹣2的圖象與x軸有兩個(gè)公共點(diǎn).
(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時(shí)函數(shù)的解析式;
(2)題(1)中求得的函數(shù)記為C1 ,
①當(dāng)n≤x≤﹣1時(shí),y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)C2:y=m(x﹣h)2+k的圖象由函數(shù)C1的圖象平移得到,其頂點(diǎn)P落在以原點(diǎn)為圓心,半徑為 的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點(diǎn)為M,求點(diǎn)P與點(diǎn)M距離最大時(shí)函數(shù)C2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10厘米,BC=8厘米,點(diǎn)D為AB 的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.
(1)用含有t的代數(shù)式表示CP.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某公路檢測(cè)中心在一事故多發(fā)地段安裝了一個(gè)測(cè)速儀器,檢測(cè)點(diǎn)設(shè)在距離公路10m的A處,測(cè)得一輛汽車從B處行駛到C處所用時(shí)間為0.9秒,已知∠B=30°,∠C=45°.
(1)求B,C之間的距離;(保留根號(hào))
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù): ≈1.7, ≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】九年級(jí)某班同學(xué)在畢業(yè)晚會(huì)中進(jìn)行抽獎(jiǎng)活動(dòng),在一個(gè)不透明的口袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3.隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再?gòu)闹须S機(jī)摸出一個(gè)小球記下標(biāo)號(hào).
(1)請(qǐng)用列表或畫樹形圖的方法(只選其中一樣),表示兩次摸出小球上的標(biāo)號(hào)的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),求中獎(jiǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com