【題目】如圖,BDAC D,EFAC FAMD=AGF1=2=35°

1)求∠GFC的度數(shù)

2)求證:DMBC

【答案】(1)125°;(2)證明見解析

【解析】試題分析:(1)由BDAC,EFAC,得到BDEF,根據(jù)平行線的性質(zhì)得到EFG=∠1=35°,再根據(jù)角的和差關(guān)系可求GFC的度數(shù)

2)根據(jù)平行線的性質(zhì)得到∠2=∠CBD,等量代換得到∠1=∠CBD,根據(jù)平行線的判定定理得到GFBC,證得MDGF,根據(jù)平行線的性質(zhì)即可得到結(jié)論.

試題解析:(1BDAC,EFAC,BDEF,∴∠EFG=∠1=35°,∴∠GFC=90°+35°=125°;

2BDEF,∴∠2=∠CBD,∴∠1=∠CBD,GFBCAMD=∠AGF,MDGF,DMBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 已知點(diǎn)A、點(diǎn)B是直線上的兩點(diǎn),AB =12厘米,點(diǎn)C在線段AB上,且AC=8厘米點(diǎn)P、點(diǎn)Q是直線上的兩個(gè)動(dòng)點(diǎn),點(diǎn)P的速度為1厘米秒,點(diǎn)Q的速度為2厘米/秒點(diǎn)P、Q分別從點(diǎn)C、點(diǎn)B同時(shí)出發(fā),在直線上運(yùn)動(dòng),則經(jīng)過 秒時(shí)線段PQ的長(zhǎng)為5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】母親節(jié)前期,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷售過程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價(jià)1元促銷,降價(jià)后30元可購(gòu)買玫瑰的數(shù)量是原來購(gòu)買玫瑰數(shù)量的1.5倍.

(1)求降價(jià)后每枝玫瑰的售價(jià)是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購(gòu)進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價(jià)為2/枝,玫瑰進(jìn)價(jià)為1.5/枝,問至少購(gòu)進(jìn)玫瑰多少枝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為(-2,8),(-11,6),(-14,0),(0,0).

(1)確定這個(gè)四邊形的面積,你是怎樣做的?

(2)如果把四邊形ABCD各頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用繩子量井深:把繩子三折來量,井外余4尺;把繩子四折來量,井外余1尺,則井深和繩長(zhǎng)分別是 ( )

A、8尺,36尺B、3尺,13尺C、10尺,34尺D、11尺,37尺

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩列火車同時(shí)從相距700千米的兩地相向而行,甲列車每小時(shí)行85千米.乙列車每小時(shí)行90千米,幾小時(shí)兩列火車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于FA90°,EGBC,且CGEGG,下列結(jié)論:①∠CEG2DCB②∠DFBCGE;③∠ADCGCDCA平分∠BCG.其中正確的結(jié)論是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,Rt△ABC,ACB=90°,AE平分BACBC于點(diǎn)EDAC上的點(diǎn),BE=DE

1)求證B+∠EDA=180°;

2)求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)OAC上,OA=2,OA為半徑的⊙OAB于點(diǎn)D,ACG,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.

(1)求證:直線DE⊙O的切線;

(2)求線段DE的長(zhǎng);

(3)求線段AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案