【題目】如圖,梯形ABCD中,ABCD,AB=14,AD= 4 , CD=7.直線l經(jīng)過(guò)A,D兩點(diǎn),且sinDAB=動(dòng)點(diǎn)P在線段AB上從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)以每秒5個(gè)單位的速度沿B→C→D的方向向點(diǎn)D運(yùn)動(dòng),過(guò)點(diǎn)PPM垂直于AB,與折線A→D→C相交于點(diǎn)M,當(dāng)P,Q兩點(diǎn)中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t秒(t>0),MPQ的面積為S.

(1)求腰BC的長(zhǎng);

(2)當(dāng)QBC上運(yùn)動(dòng)時(shí),求St的函數(shù)關(guān)系式;

(3)(2)的條件下,是否存在某一時(shí)刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由;

(4)隨著P,Q兩點(diǎn)的運(yùn)動(dòng),當(dāng)點(diǎn)M在線段DC上運(yùn)動(dòng)時(shí),設(shè)PM的延長(zhǎng)線與直線l相交于點(diǎn)N,試探究:當(dāng)t為何值時(shí),△QMN為等腰三角形?

【答案】15;(2S=﹣5t2+14t(0t≤1)(3)不存在,理由見(jiàn)解析;(4t=t=

【解析】

試題(1)利用梯形性質(zhì)確定點(diǎn)D的坐標(biāo),利用sin∠DAB=特殊三角函數(shù)值,得到△AOD為等腰直角三角形,求出梯形的高,然后利用勾股定理求出BC有長(zhǎng);

2)當(dāng)0t≤1時(shí),S=×2t×14﹣5t=﹣5t2+14t;

3)在(2)的條件下,不存在某一時(shí)刻t,使得△MPQ的面積S是梯形ABCD面積的

4△QMN為等腰三角形的情形有兩種,需要分類(lèi)討論,避免漏解.

試題解析:(15

2)當(dāng)0t≤1時(shí),S=×2t×14﹣5t=﹣5t2+14t

3)梯形ABCD的面積為42

﹣5t2+14t=42程無(wú)解,所以△MPQ的面積不能為梯形ABCD。

4△QMN為等腰三角形,有兩種情形:

如圖4所示,點(diǎn)M在線段NM的右側(cè)上

,

MQ=CD-DM-CQ=7-2t-4-5t-5=16-7t,MN=DM=2t-4,

MN=MQ,得16-7t=2t-4,解得t=;

如圖5所示,當(dāng)QMN的左側(cè)時(shí),5t-5+2t-4-7=2t-4+4-4,

解得:t=

故當(dāng)t=t=時(shí),△QMN為等腰三角形.

考點(diǎn): 一次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象分別與軸和軸交于,兩點(diǎn),且與正比例函數(shù)的圖象交于點(diǎn).

1)求的值;

2)求正比例函數(shù)的表達(dá)式;

3)點(diǎn)是一次函數(shù)圖象上的一點(diǎn),且的面積是3,求點(diǎn)的坐標(biāo);

4)在軸上是否存在點(diǎn),使的值最。咳舸嬖,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,兩家商店搞促銷(xiāo)活動(dòng),甲店:買(mǎi)一只茶壺贈(zèng)一只茶杯;乙店:按定價(jià)的9折優(yōu)惠,某顧客需購(gòu)買(mǎi)茶壺4只,茶杯若干只(不少于4只).

1)設(shè)購(gòu)買(mǎi)茶杯數(shù)為(只),在甲店購(gòu)買(mǎi)的付款為(元),在乙店購(gòu)買(mǎi)的付款數(shù)為(元),分別寫(xiě)出在兩家商店購(gòu)物的付款數(shù)與茶杯數(shù)之間的關(guān)系式;

2)當(dāng)購(gòu)買(mǎi)多少只茶杯時(shí),兩家商店的花費(fèi)相同?

3)當(dāng)購(gòu)買(mǎi)20只茶杯時(shí),去哪家商店購(gòu)物比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在國(guó)家的宏觀調(diào)控下,某市的商品房成交價(jià)由今年3月份的5000/m2下降到5月份的4050/m2.

(1)問(wèn)4、5兩月平均每月降價(jià)的百分率是多少?

(2)如果房?jī)r(jià)繼續(xù)回落,按此降價(jià)的百分率,你預(yù)測(cè)到7月分該市的商品房成交均價(jià)是否會(huì)跌破3000/m2?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的兩邊長(zhǎng)AB=18cm,AD=4cm,點(diǎn)P、Q分別從A、B同時(shí)出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運(yùn)動(dòng),Q在邊BC上沿BC方向以每秒1cm的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

(2)求PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,與射線相交于點(diǎn),連接,過(guò)點(diǎn)作,垂足為

1)線段與圖中現(xiàn)有的哪一條線段相等?你得出的結(jié)論是: ;

2)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在△ABC中,AC=BC,點(diǎn)D在△ABC外部,且∠ACB+ADB=180°,連接AB、CD.

(1)如圖1,當(dāng)∠ACB=90°時(shí),則∠ADC=______°.

(2)如圖2,當(dāng)∠ACB=60°時(shí),求證:DC平分∠ADB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,A(a0)、B(0b),且|a2|(b2a)20,點(diǎn)Px軸上一動(dòng)點(diǎn),連接BP,在第一象限內(nèi)作BCABBCAB

(1) 求點(diǎn)A、B的坐標(biāo)

(2) 如圖1,連接CP.當(dāng)CPBC時(shí),作CDBP于點(diǎn)D,求線段CD的長(zhǎng)度

(3) 如圖2,在第一象限內(nèi)作BQBPBQBP,連接PQ.設(shè)P(p,0),直接寫(xiě)出SPCQ_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC=10,sin∠BAC=,過(guò)點(diǎn)CCD∥AB,點(diǎn)E在邊AC上,AE=CD,聯(lián)結(jié)AD,BE的延長(zhǎng)線與射線CD、射線AD分別交于點(diǎn)F、G.設(shè)CD=x,△CEF的面積為y.

(1)求證:∠ABE=∠CAD.

(2)如圖,當(dāng)點(diǎn)G在線段AD上時(shí),求y關(guān)于x的函數(shù)解析式及定義域.

(3)若△DFG是直角三角形,求△CEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案