【題目】解不等式2x﹣3< ,并把解集在數(shù)軸上表示出來.
【答案】解:先去分母,得3(2x﹣3)<x+1 去括號,得6x﹣9<x+1
移項,得5x<10
系數(shù)化為1,得x<2
∴原不等式的解集為:x<2,
在數(shù)軸上表示為:
【解析】先去分母,再去括號、移項、合并同類項,系數(shù)化為1,求出不等式的解集,再在數(shù)軸上表示出來即可.
【考點精析】解答此題的關鍵在于理解不等式的解集在數(shù)軸上的表示的相關知識,掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈,以及對一元一次不等式的解法的理解,了解步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數(shù)化為1(特別要注意不等號方向改變的問題).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣2x2+bx+c的圖象經(jīng)過點A(0,4)和B(1,﹣2).
(1)求此函數(shù)的解析式;并運用配方法,將此拋物線解析式化為y=a(x+m)2+k的形式;
(2)寫出該拋物線頂點C的坐標,并求出△CAO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐標系中的三點.
(1)①請畫出△ABC關于y軸對稱的△A1B1C1;
②畫出△A1B1C1向下平移3個單位得到的△A2B2C2;
(2)若△ABC中有一點P坐標為(x,y),請直接寫出經(jīng)過以上變換后△A2B2C2中點P的對應點P2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.
(1)當正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.
①求證:BD⊥CF;
②當AB=4,AD= 時,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿著射線BC方向平移至△A'B'C',使點A'落在∠ACB的外角平分線CD上,連結(jié)AA'.
(1)判斷四邊形ACC'A'的形狀,并說明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC= ,求CB'的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com