【題目】如圖,一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象與反比例函數(shù)y=﹣ 的函數(shù)交于A(﹣2,b),B兩點(diǎn).
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線AB向下平移m(m>0)個(gè)單位長(zhǎng)度后與反比例函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求m的值.

【答案】
(1)解:把A(﹣2,b)代入y=﹣ 得b=﹣ =4,

所以A點(diǎn)坐標(biāo)為(﹣2,4),

把A(﹣2,4)代入y=kx+5得﹣2k+5=4,解得k=

所以一次函數(shù)解析式為y= x+5


(2)解:將直線AB向下平移m(m>0)個(gè)單位長(zhǎng)度得直線解析式為y= x+5﹣m,

根據(jù)題意方程組 只有一組解,

消去y得﹣ = x+5﹣m,

整理得 x2﹣(m﹣5)x+8=0,

△=(m﹣5)2﹣4× ×8=0,解得m=9或m=1,

即m的值為1或9


【解析】(1)先利用反比例函數(shù)解析式y(tǒng)=﹣ 求出b=4,得到A點(diǎn)坐標(biāo)為(﹣2,4),然后把A點(diǎn)坐標(biāo)代入y=kx+5中求出k,從而得到一次函數(shù)解析式為y= x+5;(2)由于將直線AB向下平移m(m>0)個(gè)單位長(zhǎng)度得直線解析式為y= x+5﹣m,則直線y= x+5﹣m與反比例函數(shù)有且只有一個(gè)公共點(diǎn),即方程組 只有一組解,然后消去y得到關(guān)于x的一元二次函數(shù),再根據(jù)判別式的意義得到關(guān)于m的方程,最后解方程求出m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:(2014﹣ 0+|3﹣ |﹣
(2)化簡(jiǎn):(1﹣ )÷( ﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD是平行四邊形,對(duì)角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),以下說(shuō)法錯(cuò)誤的是( 。

A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算: ﹣4sin30°+(2014﹣π)0﹣22
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖,下列說(shuō)法正確的有(  )

同一平面內(nèi),過(guò)點(diǎn)A有且只有一條直線AC垂直于直線l;線段AB,AC,AD中,AC最短,根據(jù)是“兩點(diǎn)之間的所有連線中,線段最短”;線段AB,ACAD中,AC最短,根據(jù)是“直線外一點(diǎn),與直線上各點(diǎn)連接的所有線段中,垂線段最短”;線段AC的長(zhǎng)是點(diǎn)A到直線l的距離.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以圖1(以O為圓心,半徑1 的半圓)作為基本圖形,分別經(jīng)歷如下變換能得到圖2的序號(hào)是 (多填或錯(cuò)填得0,少填酌情給分)

只要向右平移1個(gè) 單位;

先以直線AB為對(duì)稱軸進(jìn)行對(duì)稱變換,再向右平移1個(gè)單位;

先繞著O旋轉(zhuǎn)180°,再向右平移1個(gè)單位;

只要繞著某點(diǎn)旋轉(zhuǎn)180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過(guò)點(diǎn)C作CE⊥BD于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰ABC中,AB=AC,∠BAC=45°,CDABC的高,P是線段AC(不包括端點(diǎn)AC)上一動(dòng)點(diǎn),以DP為一腰,D為直角頂點(diǎn)(D、P、E三點(diǎn)逆時(shí)針)作等腰直角DPE,連接AE

(1)如圖1,點(diǎn)P在運(yùn)動(dòng)過(guò)程中,EAD=______,寫出PCAE的數(shù)量關(guān)系;

(2)如圖2,連接BE.如果AB=4,CP=,求出此時(shí)BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案