【題目】二次函數(shù)yax2bxca≠0)的圖象如圖所示,則下列結(jié)論正確的是

A.a<0
B.c>0
C.abc>0
D.b2-4ac<0

【答案】C
【解析】解:由拋物線開口向上,得a>0,故A錯誤;
由拋物線與y軸的交點在y軸負(fù)半軸,得c<0,故B錯誤;
當(dāng)x=1時,y=a+b+c,而由圖象可得(1,a+b+c)在第一象限,所以a+b+c>0,故C正確;
由拋物線與x軸有兩個交點,則當(dāng)y=0,即方程ax2bxc=0,的判別式b2-4ac>0,故D錯誤.
故選C.
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市實施“城鄉(xiāng)環(huán)境綜合治理”期間,某校組織學(xué)生開展“走出校門,服務(wù)社會”的公益活動.八年級一班王浩根據(jù)本班同學(xué)參加這次活動的情況,制作了如下的統(tǒng)計圖表: 該班學(xué)生參加各項服務(wù)的頻數(shù)、頻率統(tǒng)計表:

服務(wù)類別

頻數(shù)

頻率

文明宣傳員

4

0.08

文明勸導(dǎo)員

10

義務(wù)小警衛(wèi)

8

0.16

環(huán)境小衛(wèi)士

0.32

小小活雷鋒

12

0.24

請根據(jù)上面的統(tǒng)計圖表,解答下列問題:

(1)該班參加這次公益活動的學(xué)生共有名;
(2)請補全頻數(shù)、頻率統(tǒng)計表和頻數(shù)分布直方圖;
(3)若八年級共有900名學(xué)生報名參加了這次公益活動,試估計參加文明勸導(dǎo)的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一些體積為1的小立方體恰好可以組成體積為1的大立方體,把所有這些小立方體一個接一個向上摞起來,大概有多高呢?以下選項中最接近這一高度的是(

A. 蓮花山望海觀音的高度 B. 滴水巖森林公園青蘿嶂高度

C. 廣州塔的高度 D. 國際航班飛行高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|1﹣ |+(π﹣2014)0﹣2sin45°+( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市準(zhǔn)備將一批帳篷和食品送往扶貧區(qū).已知帳篷和食品共320件,且?guī)づ癖仁称范?/span>80件.

(1)直接寫出帳篷有   件,食品有   件;

(2)現(xiàn)計劃租用A、B兩種貨車共8輛,一次性將這批物資全部送到扶貧區(qū),已知兩種車可裝帳篷和食品的件數(shù)以及每輛貨車所需付運費情況如表,問:共有幾種租車的方案?最少運費是多少?

帳篷(件)

食品(件)

每輛需付運費(元)

A種貨車

40

10

780

B種貨車

20

20

700

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司在甲地、乙地分別生產(chǎn)了17臺、15臺同一種型號的機械設(shè)備,現(xiàn)要將這些設(shè)備全部運往A、B兩市,其中運往A市18臺、運往B市14臺,從甲地運往A、B兩市的費用分別為800元/臺和500元/臺,從乙地運往A、B兩市的費用分別為700元/臺和600元/臺.設(shè)甲地運往A市的設(shè)備有x臺.
(1)請用x的代數(shù)式分別表示甲地運往B市、乙地運往A市、乙地運往B市的設(shè)備臺數(shù);
(2)求出總運費y(元)與x(臺) 的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)要使總運費不高于20200元,請你幫助該公司設(shè)計調(diào)配方案,并寫出有哪幾種方案,哪種方案總運費最小,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=10,∠A=40°,點D為弧BC的中點,點P是直徑AB上的一個動點,PC+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,拋物線的對稱軸與拋物線交于點P,與直線BC交于點M,且PM= AB.

(1)求拋物線的解析式;
(2)點K是x軸正半軸上一點,點A、P關(guān)于點K的對稱點分別為 、 ,連接 、 ,若 ,求點K的坐標(biāo);
(3)矩形ADEF的邊AF在x軸負(fù)半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個單位,直線AD、EF分別交拋物線于G、H.問:是否存在實數(shù)t,使得以點D、F、G、H為頂點的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案