【題目】“長跑”是中考體育考試項(xiàng)目之一.某中學(xué)為了解九年級學(xué)生“長跑”的情況,隨機(jī)抽取部分九年級學(xué)生,測試其長跑成績(男子1000米,女子800米),按長跑的時(shí)間的長短依次分為AB,C,D四個(gè)等級進(jìn)行統(tǒng)計(jì),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查中共抽取了  名學(xué)生,扇形統(tǒng)計(jì)圖中,D類所對應(yīng)的扇形圓心角大小為 ;

2)所抽取學(xué)生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學(xué)生,請你估計(jì)該校C等級的學(xué)生約在多少人?

【答案】145;104°; (2C; (3400人.

【解析】

1A的人數(shù)除以A所占的比例得到總?cè)藬?shù),用360°乘以D所占的比例得到D對應(yīng)的圓心角;(2)算出B的人數(shù),然后利用中位數(shù)概念解題;(3900乘以C所占的比例即可

18÷=45

D對應(yīng)的圓心角為:360°×=104°

2B的人數(shù)為45-8-20-13=4(人)

所以中位數(shù)落在C等級

3900×=400(人)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地之間的路程為3000m,甲、乙兩人分別從AB兩地同時(shí)出發(fā),相向而行,甲到B地停止,乙到A地停止,出發(fā)10分鐘后,甲原路原速返回A地取重要物品,取到該物品后立即原路原速前往B地(取物品的時(shí)間忽略不計(jì)),結(jié)果到達(dá)B地的時(shí)間比乙到達(dá)A地的時(shí)間晚,在整個(gè)行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程ym)與甲運(yùn)動的時(shí)間xmin)之間的關(guān)系如圖所示,則乙到達(dá)A地時(shí),甲與B地相距的路程是_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,水壩的橫截面是梯形,迎水坡的坡角,背水坡的坡度,壩頂寬米,壩高5米.求:

1)壩底寬的長(結(jié)果保留根號);

2)在上題中,為了提高堤壩的防洪能力,市防汛指揮部決定加固堤壩,要求壩頂加寬0.5米,背水坡的坡度改為,已知堤壩的總長度為,求完成該項(xiàng)工程所需的土方(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,以為邊在的另一側(cè)作,點(diǎn)為射線上任意一點(diǎn),在射線上截取,連接、、

1)如圖1,當(dāng)點(diǎn)落在線段的延長線上時(shí),的度數(shù)為__________

2)如圖2,當(dāng)點(diǎn)落在線段(不含邊界)上時(shí),交于點(diǎn),請問(1)中的結(jié)論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;

3)在(2)的條件下,若,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,RtABC中,∠C90°,AC3BC4,點(diǎn)DAB邊上任意一點(diǎn),則CD的最小值為____

2)如圖②,矩形ABCD中,AB3,BC4,點(diǎn)M、點(diǎn)N分別在BD、BC上,求CM+MN的最小值____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+c與直線lykx+mk0)交于A10),B兩點(diǎn),與y軸交于C0,3),對稱軸為直線x2

1)請直接寫出該拋物線的解析式;

2)設(shè)直線l與拋物線的對稱軸的交點(diǎn)為F,在對稱軸右側(cè)的拋物線上有一點(diǎn)G,若,且SBAG6,求點(diǎn)G的坐標(biāo);

3)若在直線上有且只有一點(diǎn)P,使∠APB90°,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,分別是兩棵樹及其影子的情形

1)哪個(gè)圖反映了陽光下的情形?哪個(gè)圖反映了路燈下的情形.

2)請畫出圖中表示小麗影長的線段.

3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C 是⊙O上一點(diǎn),過點(diǎn)C 作⊙O的切線,交BA的延長線交于點(diǎn)D,過點(diǎn)B BEBA,交DC延長線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC

1)求證:∠ECB=EBC

2)連接BF,CF,若BF=5,sinFBC=,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,當(dāng)線段AB與坐標(biāo)軸不垂直時(shí),以線段AB為斜邊作RtABC,且邊BCx軸,則稱AC+BC的值為線段AB的直角距離,記作LAB);當(dāng)線段AB與坐標(biāo)軸垂直時(shí),線段AB的直角距離不存在.

1)在平面直角坐標(biāo)系中,A14),B4,2),求LAB).

2)在平面直角坐標(biāo)系中,點(diǎn)A與坐標(biāo)原點(diǎn)重合,點(diǎn)Bx,y),且LAB)=2

當(dāng)點(diǎn)Bx,y)在第一象限時(shí),易知ACx,BCy.由AC+BCLAB),可得yx之間的函數(shù)關(guān)系式為   ,其中x的取值范圍是   ,在圖中畫出這個(gè)函數(shù)的圖象.

請模仿的思考過程,分別探究點(diǎn)B在其它象限的情形,仍然在圖中分別畫出點(diǎn)B在二、三、四象限時(shí),yx的函數(shù)圖象.(不要求寫出探究過程)

3)在平面直角坐標(biāo)系中,點(diǎn)A1,1),在拋物線yaxh2+5上存在點(diǎn)B,使得2LAB)≤4

當(dāng)a=﹣時(shí),直接寫出h的取值范圍.

當(dāng)h0,且△ABC是等腰直角三角形時(shí),直接寫出a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案