【題目】如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為8.則k的值為_____.
【答案】3
【解析】
連接OA.根據(jù)反比例函數(shù)的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=4.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據(jù)S△OAB=4,得出a-b=4①.根據(jù)S△OAC=4,得出-a-b=2②,①與②聯(lián)立,求出a、b的值,即可求解.
如圖,連接OA.
由題意,可得OB=OC,
∴S△OAB=S△OAC=S△ABC=4.
設直線y=x+2與y軸交于點D,則D(0,2),
設A(a,a+2),B(b,b+2),則C(-b,-b-2),
∴S△OAB=×2×(a-b)=4,
∴a-b=4 ①.
過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,
則S△OAM=S△OCN=k,
∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=4,
∴(-b-2+a+2)(-b-a)=4,
將①代入,得
∴-a-b=2 ②,
①+②,得-2b=6,b=-3,
①-②,得2a=2,a=1,
∴A(1,3),
∴k=1×3=3.
故答案為3.
科目:初中數(shù)學 來源: 題型:
【題目】觀察下表:
則一元二次方程x2-2x-2=0在精確到0.1時一個近似根是______,利用拋物線的對稱性,可推知該方程的另一個近似根是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某大學的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側距離地面高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計)( )
A. 9.2m B. 9.1m C. 9.0m D. 8.9m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為2:1,則下列結論正確的是( )
A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知MN∥EF∥BC,點A、D為直線MN上的兩動點,AD=a,BC=b,AE∶ED=m∶n;
(1)當點A、D重合,即a=0時(如圖1),試求EF.(用含m,n,b的代數(shù)式表示)
(2)請直接應用(1)的結論解決下面問題:當A、D不重合,即a≠0,
①如圖2這種情況時,試求EF.(用含a,b,m,n的代數(shù)式表示)
圖1
圖2
圖3
②如圖3這種情況時,試猜想EF與a、b之間有何種數(shù)量關系?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形網(wǎng)格放置在平面直角坐標系中,其中每個小正方形的邊長均為1,△ABC經(jīng)過平移后得到△A1B1C1,若AC上一點P(1.2,1.4)平移后對應點為P1,點P1繞原點順時針旋轉180°,對應點為P2,則點P2的坐標為( 。
A. (2.8,3.6) B. (﹣2.8,﹣3.6)
C. (3.8,2.6) D. (﹣3.8,﹣2.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在玩轉盤游戲時,把兩個可以自由傳動的轉盤A,B分別分成4等份,3等份的扇形區(qū)域,并在每一小區(qū)域內(nèi)標上數(shù)字(如圖所示).游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區(qū)域的數(shù)字之和為奇數(shù),則甲勝;若指針所指兩個區(qū)域的數(shù)字之和為偶數(shù),則乙勝.如果指針落在分割線上,則需要重新轉動轉盤.請問這個游戲規(guī)則對甲、乙雙方公平嗎?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com